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ABSTRACT 
Inflation target formulations differ across countries and over time. Most widespread are 

point targets, target ranges, hybrid combinations of the two, or mere definitions of price 

stability. This paper proposes a novel empirical measure of expectations anchoring based on 

the cross-sectional distribution of private sector inflation point forecasts. Applying this to a 

panel of 29 countries, it finds three main results. First, a numerical target definition per se 

does not improve anchoring compared to a definition of price stability, while the formulation 

of a numerical reference point increases the degree of anchoring. Second, point targets and 

hybrid target formulations are associated with better anchoring than target ranges. Third, 

periods of persistent target deviations lead to an increase in tail risks to the inflation outlook. 

Conditional on such periods, point targets and hybrid targets attenuate tail risks to the 

inflation outlook, with a stronger quantitative effect for point targets. The results are 

consistent with models suggesting that targets ranges are interpreted as zones where 

monetary policy is less active. 
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NON-TECHNICAL SUMMARY 
Inflation expectations are a pivotal intermediate target for central banks to achieve their inflation 
objective. While short-term inflation expectations are affected by economic conditions, longer-term 
inflation expectations reveal the credibility of central bank's inflation objective. Inflation targeting 
(IT) underscores this link by announcing an explicit numerical value for the inflation objective. 
Looking at real-world target formulations, the degree of heterogeneity of target formulations is 
striking. While some countries provide a point target, others define a range for inflation outcomes 
that the central bank intends to achieve. Hybrid solutions are also widespread, including a target range 
with emphasis on a focal point or point targets with a numerically defined tolerance band around it. 
Surprisingly little is known about the anchoring properties of alternative inflation target formulations. 
This paper investigates empirically whether inflation target formulations matter for the anchoring of 
medium- to long-term inflation expectations 

We use data from an unbalanced panel of 29 countries, covering the period from 2005m4 to 2020m4. 
To quantify the degree of anchoring, we propose a novel measure based on the cross-sectional 
distribution of private sector inflation point forecasts based on Consensus data for horizons of two 
to six years ahead. 

We find four main results. First, a numerical target definition per se does not improve anchoring, while 
the formulation of a numerical reference point increases unconditionally the degree of anchoring 
compared to a quantitative definition of price stability for forecast horizons of two to six years (see 
Figure). Second, point targets and hybrid target formulations are associated with better anchoring 
properties than target ranges. Third, periods of persistent inflation overshooting and undershooting 
lead to an increase in tail risks to the inflation outlook. Fourth, conditional on periods of persistent 
target deviations, a point target is associated with lower tail risks to the inflation outlook. Our results 
are consistent with models suggesting that targets ranges are interpreted as zones where monetary 
policy is less active. 
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Ancrage des anticipations d'inflation :
les formulations des cibles d'inflation

sont-elles importantes ?

RÉSUMÉ 

Nous proposons une nouvelle mesure de l'ancrage des anticipations basée sur la distribution 
transversale des prévisions ponctuelles d'inflation du secteur privé. En appliquant cette mesure à 
un panel de 29 pays, nous trouvons quatre résultats principaux. Premièrement, la formulation d'un 
point de référence numérique augmente inconditionnellement le degré d'ancrage par rapport à une 
définition quantitative de la stabilité des prix pour des horizons de prévision de deux à six ans. 
Deuxièmement, les cibles ponctuelles et les formulations de cibles hybrides sont associées à de 
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1 Introduction

Inflation expectations are a pivotal intermediate target for central banks to achieve

their inflation objective. While short-term inflation expectations are affected by eco-

nomic conditions, longer-term inflation expectations reveal the credibility of central

bank’s inflation objective. Inflation targeting (IT) underscores this link by announcing

an explicit numerical value for the inflation objective. Looking at real-world target

formulations, the degree of heterogeneity of target formulations is striking. While some

countries provide a point target, others define a range for inflation outcomes that the

central bank intends to achieve. Hybrid solutions are also widespread, including a tar-

get range with emphasis on a focal point or point targets with a numerically defined

tolerance band around it. Surprisingly little is known about the anchoring properties

of alternative inflation target formulations.

This paper investigates empirically whether inflation target formulations matter for

the anchoring of medium- to long-term inflation expectations. We use data from an

unbalanced panel of 29 countries, covering the period from Q2 2005 to Q2 2020. To

quantify the degree of anchoring, we propose a measure based on the cross-sectional

distribution of private sector inflation point forecasts based on Consensus data for

horizons of two to six years ahead. We summarize beliefs about inflation outcomes

using a skew extended version of the t-distribution (Jones and Faddy, 2003), which we

fit to the data using simulated method of moments estimation. The main measure of

anchoring is given by the density of inflation forecasts falling within a tight symmetric

interval around the midpoint of the inflation target. It is thus a real-time (subjective)

belief-based probability measure of being on target. The density of forecasters’ beliefs

below and above the edges of the tight interval around target provide two further

indices, (i) downside risk to inflation and (ii) upside risk to inflation, which capture

the degree of asymmetry in the distribution across forecasters’ ”best predictions”.

We document time-variation and cross-country variation in disagreement and asym-

metry, implying significant variation in the tails of the cross-sectional distribution of

long-term inflation forecasts. To motivate why asymmetry in the inflation outlook mat-

ters, we derive inflation anchoring measures within a framework proposed by Kilian

and Manganelli (2008) that generalizes monetary policy rules to the case of poten-

tially asymmetric and non-quadratic central bank preferences. The resulting optimal

forward looking policy rule contains a weighting of upside and downside risks to the

inflation outlook, consistent with the proposed empirical anchoring measures. By em-

phasizing the balance of risks to inflation, the approach reconciles models based on

expected utility with the risk management approach to central banking (Greenspan,
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2004; Draghi, 2016; Powell, 2020).

We run a number of empirical tests to evaluate the performance of alternative target

formulations. Quantitative targets for monetary policy are grouped in four categories:

(i) no explicit numerical target, but a quantitative definition of price stability, (ii) a

target range, (iii) a hybrid target, i.e. a target range with a focal point or a point target

with a tolerance band, and (iv) a point target. In our baseline specification, we find

that a numerical target per se is not necessarily superior to a quantitative definition

of price stability. However, a target formulation that includes a numerical reference

point, either as inflation point target or in a hybrid strategy, improves the anchoring

of inflation expectations. The probability-based measure is significantly more centered

on target at all forecast horizons. Pure ranges, in contrast, feature weaker anchoring.

When we compare only numerical target types, we find that hybrid target formulations

are raising the probability measure of being on target by an economically significant

amount and to a similar extent as inflation point targets. Are gains from better

inflation anchoring symmetric around the inflation objective? Looking at the measures

of risk to the inflation outlook, we find that this is not the case. Forecasters’ beliefs

get not only compressed, but also shift: Lower risks of above target inflation are

simultaneously associated with slightly more pronounced risk of below target inflation.

The findings are robust to a number of alternative specifications of the empirical

model. In particular, we find similar results in a sample of only advanced economies,

when we exclude countries with a bad inflation track record from the country sample,

or if we take an anchoring measure from the unprocessed survey data.

Further, we test if target formulations can prevent unanchoring of expectations dur-

ing periods of persistent deviations from target. Following Neuenkirch and Tillmann

(2014), we use the gap of past inflation realizations from target over the past 60

months to differentiate periods of sustained undershooting from periods of sustained

overshooting. We find that persistently low inflation impairs anchoring, consistent

with results presented by Ehrmann (2015) for short-term expectations. Persistent

overshooting, however, has no effect on the main measure of anchoring. Additionally,

we find that persistent deviations from target have strong effects on the shape of the

cross-sectional distribution of forecasts in the expected direction. Past undershooting

raises downside risk to the inflation outlook and dampens the risk of above target in-

flation, while overshooting affects the distribution in the opposite way. This is in line

with theories of information rigidities, which predict that gathering information has

a higher return for forecasters who’s current prediction is more distant to the signal,

i.e. realized inflation. It is more likely that these agents revise their forecast and bring

it closer to current inflation trends (Coibion and Gorodnichenko, 2015). How is it
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possible to change shape while keeping the central tendency of the distribution across

inflation point forecasts more or less stable? Intuitively, the results are generated by

swings in the tails of the skew t-distribution, that are related in a systematic way

to past inflation deviations. In economic terms, this implies that at times very high

inflation rates or deflationary tendencies fall within the set of forecasters’ beliefs, while

the central tendency might not necessarily be affected.

In a final step, we ask whether one target formulation is more effective than another

to curb the risk to the inflation outlook during periods of persistent deviations from

target. To this end, the persistent inflation gap indicator is interacted with the classi-

fication of target types. We conclude that no target type fares significantly better in

improving overall anchoring conditional on a persistent deviation. At the same time,

we find differences to what extend the tails of the distribution are affected: inflation

point targets fare best regarding shape-stability conditional on persistent target devi-

ations. They attenuate the increase in the risk to below target inflation during periods

of undershooting, while also significantly dampening the rise in the risk of above target

inflation during periods of overshooting. Hybrid target formulations also attenuate the

shift in the tails of cross-sectional distributions, but to a much lower extent compared

to pure point targets.

From a theoretical standpoint, it is a priori not clear how target formulation affect

the degree of anchoring, or the balance of risks to inflation. One strand of papers argues

that a range target or tolerance band gives more flexibility to central bankers to pur-

sue secondary objectives, putting the inflation objective at a lower priority (Svensson,

1997b; Orphanides and Wieland, 2000). Such theories predict that lower probability

mass is located in close proximity around target in the presence of a target range or tol-

erance band. Contesting this view, another strand of papers argues that inflation rates

are practically never aligned with a point target and that announcing a target range or

tolerance band increases central bank credibility and promotes anchoring (Demertzis

and Viegi, 2009; Andersson and Jonung, 2017). Stein (1989) takes this argument one

step further, claiming that any clear announcement of policy objectives is interpreted

as cheap talk due to an inherent time-inconsistency problem. His theory would fa-

vor vague quantitative definitions of price stability over an explicit numerical target.

The model’s prediction is that any numerical announcement is counterproductive for

anchoring. In a related analysis, Dovis and Kirpalani (forthcoming) find that central

banks might want to preserve uncertainty about its inflation target to foster ex post

commitment to the rule. For central banks with low reputation, this is a way to better

anchor expectations over time. Confronted with opposing theoretical predictions on

the relationship between target formulations and anchoring, the question is empirical
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in nature.

Our empirical results have three important implications for this strand of literature.

First, the weak anchoring of inflation expectations in the presence of pure target ranges

is consistent with approaches suggesting that pure ranges are interpreted as zones

where monetary policy is less active. Second, our findings are in line with predictions

of the flexibility view, i.e. tolerance bands provide more room for interpretation of

the inflation target during periods of sustained target deviations than point targets.

Third, a vague target formulation which is based on a mere definition of price stability

is dominated by a target type with reference to an explicit point target or focal point,

indicating that central banks can reveal policy objectives credibly even in the presence

of time-inconsistent objectives.

Further, our result of stronger anchoring properties for point targets or hybrid

targets with explicit reference to a focal point are consistent with findings within a

learning-to-forecast laboratory experiment conducted by Cornand and M’baye (2018).

The announcement of a point target is associated with faster convergence of partici-

pants’ expectations to target than under a range target in their setup.

This paper is primarily related to two empirical papers also differentiating be-

tween inflation target formulations. Castelnuovo, Nicoletti-Altimari, and Rodriguez-

Palenzuela (2003) document in a sample of 15 industrial countries that the adoption

of a quantitative inflation aim improves anchoring, including mere definitions of price

stability. However, they do not find any significant difference between countries adopt-

ing a range target versus a point target. An important difference to our work is the

sample period. While their data covers the period 1990-2002, our sample only starts

in 2005 due to data availability on moments of the cross-sectional distribution, hence

showing no overlap. Ehrmann (2021), work developed in parallel, distinguishes be-

tween range targets, point targets, and point targets with tolerance bands in a sample

of 20 countries. He finds that pass-through of past inflation realizations is weaker

for countries that have defined a target range or tolerance band for inflation. This

implies weaker anchoring for pure point targets. The differences to our results can

be explained by three factors. First, his work focuses on a shorter forecast horizon of

one-and-a-half years. Second, the study covers a different subset of countries and a

longer sample period starting in 1995. Third, the nature of the underlying test differs,

as Ehrmann (2021) looks at the pass-through of realized inflation on inflation expecta-

tions. A lower pass-through coefficient for target ranges is not necessarily inconsistent

with our finding of less probability of cross-sectional point forecasts around target. It

is well possible that short-term inflation expectations respond less to inflation real-

izations, while being more distant to the announced inflation objective of the central
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bank in levels. Since the notion of anchoring is not universally defined and merits

to be analyzed from different angles, as discussed below, we consider his findings as

complementary to ours.

While there exists no widely-agreed definition of well-anchored inflation expecta-

tions, Afrouzi, Kumar, Coibion, and Gorodnichenko (2015) list five criteria that are

recurrent in empirical tests of anchoring: (i) average beliefs being close to target, (ii)

beliefs that are not too dispersed across agents, (iii) confidence in the belief, thus lit-

tle (subjective) uncertainty about inflation projections, (iv) forecast revisions should

be small, notably over longer horizons, (v) little co-movement between long-run and

short-run inflation expectations. One contribution of this paper is to extend this list

with a sixth criterion, emphasizing that more symmetric distributions are desirable

from the perspective of a risk-averse central banker.

There is a large body of papers focusing on variants of criterion (v).1 Less attention

has been devoted on the level of long-term inflation expectations with respect to tar-

get, which is more closely related to the approach taken here. Mehrotra and Yetman

(2018) use a three-dimensional panel data set, using the mean of long-run Consensus

forecasts at all available forecast horizons, to estimate the perceived long-run anchor,

which they then compare with alternative measures of long-term inflation projections.

Moessner and Takats (2020) consider the distance of Consensus long-term inflation ex-

pectations from the inflation target as the anchoring property, without considering the

differential effects of target types on anchoring. Anchoring as defined in Grishchenko,

Mouabbi, and Renne (2019) comes closest to the here proposed anchoring measure.

They construct conditional density inflation forecasts for the US and the euro area

from the survey of professional forecasters. They estimate parametric distribution

functions to bins of inflation outcomes provided by each participant in these surveys.

Their proposed anchoring measure is the probability density within a +/- 0.5 percent-

age point interval around the central bank’s inflation target. While their measure is

very similar to ours, an important difference is that our cross-sectional measure does

not account for subjective forecast uncertainty, given that Consensus only collects

point forecasts containing the best projection of each panelist. This has advantages

and disadvantages at the same time. While it would be informative to consider density

forecasts, it is not clear how these relate to the best projection (Engelberg, Manski,

and Williams, 2009; Clements, 2014).

1This literature uses so-called pass-through regression models, usually measuring the effect of
changes in short-term expectations on longer-term expectations (Jochmann, Koop, and Potter, 2010;
Pooter et al., 2014; Lyziak and Paloviita, 2017; Buono and Formai, 2018). In a related approach,
anchoring is measured by the extent to which long-term inflation expectations obtained from break-
even inflation rates respond to macroeconomic news (Gürkaynak, Levin, and Swanson, 2010; Beechey,
Johannsen, and Levin, 2011; Bauer, 2015; Hachula and Nautz, 2018; Speck, 2017).
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More broadly, this paper is also related to the empirical literature on the effects of

the introduction of inflation targeting (IT) on inflation expectations. Crowe (2010)

finds in a sample of 11 countries that the introduction of IT reduces the forecast error

of private sector forecasts. He concludes that this results from increased transparency

about central bank objectives. Levin, Natalucci, and Piger (2004) look at pass-through

of current inflation to long-term expectations in a set of 12 advanced economies, finding

that the IT framework has helped to better anchor medium- to longer-run inflation

expectation. Davis (2014) comes to the same conclusion in a larger set of 36 countries,

considering the pass-through of shocks to inflation, inflation expectations and oil prices.

Gürkaynak, Levin, and Swanson (2010) compare market-based inflation expectations

of three IT countries (UK, Sweden, Canada) and the US, noting that far-ahead forward

rates respond more to economic news and are more volatile in the US, suggesting

higher anchoring in IT countries. Bundick and Smith (2018) conduct an event study

around the introduction of numerical point targets in the US and Japan, finding that

anchoring improved in the US but not in Japan.

The paper is organized as follows. Section 2 presents a model of central bank

inflation risk management to motivation the proposed anchoring measures. Section 3

presents the data and describes how we estimate continuous density functions of cross-

sectional point forecasts. Section 4 contains the empirical analysis while Section 5

examines the robustness of the results. Section 6 concludes.

2 Measures of expectations anchoring accounting

for asymmetry

This section derives measures of inflation expectations anchoring consistent with po-

tentially asymmetric central bank preferences. We closely follow Kilian and Manganelli

(2008) in the exposition. The optimal policy rule features a balancing of upside and

downside risks to inflation. Based on Svensson’s (1997a) idea of inflation forecast

targeting, forward-looking risk measures are derived which serve as blue print for the

empirical anchoring measures computed from continuous density functions estimated

in Section 3 from a cross-sectional panel of professional forecasters.

2.1 Inflation risk management model

Let us first consider the seminal case of an expected utility maximizing central banker’s

problem of optimal monetary policy under discretion, where the central bank seeks to
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set a sequence of nominal interest rates {it}∞t=0 that minimizes the objective function:

min
{it}

Et

∞∑
τ=0

δτLt+τ (2.1)

Various proposals have been made for specifying the loss function Lt. The seminal

linear-quadratic specification takes the form

Lt =
1

2
(πt − π∗)2 + λ

1

2
(yt)

2,

where πt denotes realized inflation, π∗ is the inflation target and yt an output gap

measure. The parameter λ then captures to what extend the central bank cares about

the output objective. Substituting in a linear Phillips curve and taking the first order

condition of the minimization problem gives rise to an implied interest rate rule under

optimal policy that closely resembles the Taylor rule (Svensson, 1997b; Clarida, Gaĺı,

and Gertler, 1999).

Kilian and Manganelli (2008) propose a generalization to the problem of optimal

policy toward asymmetric and risk-averse preferences.2 They formalize ’upside risk’

and ’downside risk’ to price stability as situations in which a central banker is con-

cerned about inflation realizations below a certain threshold, πt < π < π∗ or above a

certain threshold πt > π̄ > π∗. The resulting loss function takes the form

Lt =
[
aI(πt < π)(π − πt)γ

L
π + (1− a)I(πt > π̄)(πt − π̄)γ

H
π

]
,

+ λ
[
bI(yt < y)(y − yt)γ

L
y + (1− b)I(yt > ȳ)(yt − ȳ)γ

H
y

]
with 0 ≤ a, b ≤ 1 and λ ≥ 0.

The parameter λ captures, as before, the weight for the output objective. A set

of indicator functions, denoted I(·), take the value of one if the condition inside the

brace is fulfilled and zero otherwise. Parameters a and b then govern the degree

of asymmetry, while γL(·) and γH(·) determine the risk aversion of the central banker to

inflation and output gap realizations. This specification nests the possibility of a target

zone of inflation, as losses occur only from inflation realizations outside the interval

[π, π̄]. Note that this loss function also nests the standard quadratic and symmetric

loss function with a point target for inflation stated above.3

2 Ruge-Murcia (2003) and Cukierman and Muscatelli (2008) also analyze optimal policy under
asymmetric preferences using a linex function to characterize central bank losses.

3This is the case under the parameterization a = b = 1/2 (symmetry), quadratic losses γL(·) =

γH(·) = 2, a midpoint for inflation objective π = π̄ = π∗, as well as deviations from output from the
natural level standardized to zero, y = ȳ = 0.
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To simplify the expression, let us ignore the output objective and set λ = 0. In

expectation, the loss function can be rewritten as

E(Lt+h) = a

∫ π

−∞
(π − πet )γ

H
π dFπet (π

e
t ) + (1− a)

∫ ∞
π̄

(πet − π̄)γ
L
π dFπe(π

e
t ), (2.2)

where Fπe denotes the probability density function over expected inflation realizations.

Let us further denote inflation risk measures under the distribution of inflation expec-

tations Fπe as disanchoring due to low inflation (DAL) and disanchoring due to high

inflation (DAH), respectively

DALγLπ (Fπe) =

∫ π

−∞
(π − πe)γLπ dFπe(πe) (2.3)

DAHγHπ
(Fπe) =

∫ ∞
π̄

(πe − π̄)γ
H
π dFπe(π

e) (2.4)

Kilian and Manganelli (2008) define the general risk management problem as follows:

Definition 1. [Risk management problem] Let F
(1)
πe and F

(2)
πe denote two alternative

probability distributions for inflation expectations. Then F
(1)
πe is weakly preferred over

F
(2)
πe if | DALγLπ (F

(1)
πe ) |≤| DALγLπ (F

(2)
πe ) | and DAHγHπ

(F
(1)
πe ) ≤ DAHγHπ

(F
(2)
πe ). If this

condition does not hold, the central banker faces a risk management problem.

In words, the central banker needs to trade-off downside risk to inflation against up-

side risk to inflation. Without additional information about central bank preferences,

it is impossible to characterize a solution to this problem. This requires the existence

of a central bank utility function over alternative probability density functions, giving

rise to a risk management model.

Definition 2. [Risk management model] A central banker’s preferences satisfy a risk

management model if and only if there is a real valued function U in risks such that

for all relevant distributions F
(1)
πe and F

(2)
πe , F

(1)
πe is preferred over F

(2)
πe if and only if

U(DALγLπ (F
(1)
πe ), DAHγHπ

(F
(1)
πe )) > U

(
DALγLπ (F

(2)
πe ), DAHγHπ

(F
(2)
πe )
)

.

From substituting equations (2.2), (2.3) and model (2.4) into the central bank’s op-

timization problem (2.1) and deriving the first order condition, Kilian and Manganelli

(2008) obtain an implicit nonlinear, potentially asymmetric interest rate rule:

∂EtLt(πt)

∂it
=
∂Et(πt(it))

∂it

[
−aγLπ

∫ π

−∞
(π − πt)γ

H
π −1dFπt(πt)

+(1− a)γHπ

∫ ∞
π̄

(πt − π̄)γ
H
π −1dFπt(πt)

]
= 0 (2.5)

The rule is a weighted average of measures of downside risk and upside risk to inflation,
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where parameters a, γLπ and γHπ govern the response of the instrument to inflation risk.

Thus, a risk-averse central banker takes into account the entire distribution of possible

inflation outcomes and weights them according to her preferences.

2.2 Risk measures

Based on the optimal policy rule (2.5), we next derive measures of inflation risk, based

on continuous probability density functions, which are consistent with preferences

featuring risk aversion and potentially asymmetry. Further, we use the insights of

Svensson (1997a), who shows that inflation targeting can best be operationalized via

forecast targeting if the control lag of monetary policy is well understood. Then, the

loss function of the central banker, based on realized inflation in the standard case,

can be substituted by an intermediate loss function using inflation forecasts as inputs.

Before we derive the inflation risk measures, we briefly discuss pros and cons of five

sets of data which provide densities over future inflation outcomes and are, therefore,

candidates for the anchoring measures. First, density forecasts from macroeconometric

models (Mitchell and Wallis, 2011). The disadvantage is that empirical model forecasts

do not contain information about the credibility of central bank inflation objective as

perceived by economic agents. Second, aggregated subjective probability forecasts as

provided in the survey of professional forecasters (SPF). While the SPF provides a

useful basis for the measurement of inflation risk (Grishchenko, Mouabbi, and Renne,

2019), this data is only available for the US and the euro area. Third, central bank

density forecasts for inflation (Knüppel and Schultefrankenfeld, 2012). While central

bank inflation density forecasts become increasingly available for a larger set of coun-

tries, cross-country comparability of inflation risk assessments remains a constraint in

empirical work, as well as the historical availability of such forecasts. Fourth, option-

implied inflation probability density functions that reflect the market assessment of

inflation risk (Kitsul and Wright, 2013). While the financial market-based measures

pose challenges with respect to the decomposition into inflation expectations, infla-

tion risk premia and liquidity premia, they are also only available for a limited set

of countries with sufficiently well developed derivatives markets. We are going to fo-

cus, fifth, on the cross-sectional distribution of inflation point forecasts of the private

sector. This data is available for a large set of countries through Consensus, directly

comparable to each other, and measuring inflation expectations in real time.

We do not interpret the density functions derived from the cross-section of point

forecasts as density forecasts, but rather as a summary of beliefs across agents. Macroe-

conomic models that depart from the assumption of rational expectations have shown
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that dispersion in private sector inflation expectations provide relevant information

for monetary policy (Orphanides and Williams, 2005). A related, but subordinated

question is why professional forecasters disagree, hence giving rise to a cross-sectional

distribution of forecasts. The literature based on models with Bayesian learning finds

that the origin of disagreement can range from differences in private information sets

and opinion, i.e. priors or models (Patton and Timmermann, 2010), inattentiveness of

professional forecasters (Sims, 2003; Andrade and LeBihan, 2013), idiosyncratic uncer-

tainty (Lahiri and Sheng, 2010), or dispersion in the interpretation of news (Manzan,

2011). For our analysis, the source for disagreement is of secondary importance. What

matters is the relevance of dispersed beliefs for inflation outcomes and monetary policy

decision.

For the empirical analysis, we propose three probability measures derived from the

cross-section of inflation point forecasts closely related to (2.3) and (2.4). Since es-

timating the degree of risk aversion of each central bank is beyond the scope of this

paper, we set γLπ = γHπ = 0. Further, let h denote the forecast horizon, and i the

country. We then obtain empirical measures of downside risk to inflation (DAL) and

upside risk to inflation (DAH) from the probability density across point forecasts as:

DALhit =

∫ πi

−∞
dFπhit(π

h
it) (2.6)

DAHh
it =

∫ ∞
π̄i

dFπhit(π
h
it) (2.7)

Complementing these two measures of risk to the inflation outlook, we define our

main measure of anchoring as the cumulative density of point forecasts falling within

a narrow interval around the inflation objective

probT hit =

∫ π̄i

πi

dFπhit(π
h
it) (2.8)

= 1−DALhit −DAHh
it.

3 Data

This section describes the classification of quantitative inflation targets and the ap-

proach of estimating continuous density functions to moments of the cross section of

inflation point forecasts from private sector survey data.
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3.1 Classification of quantitative inflation targets

We code the quantitative inflation targets of 29 countries. The sample of countries

is composed out of 12 advanced economies (AE) and 17 emerging market economies

(EME).4 We follow Castelnuovo, Nicoletti-Altimari, and Rodriguez-Palenzuela (2003)

and define dummy variables for five categories: (i) a mere quantitative definition of

price stability, (ii) a range target for inflation, (iii) a range target with focal point, (iv)

a point target with tolerance bands and (v) an inflation point target.

Some remarks on the coding of inflation targets are in order. First, given the

nuanced definition of inflation objectives in practice, the boundaries of central bank

objectives defined as point targets versus range targets are not always clear cut. We

therefore acknowledge that there might be controversial views about the classification

of some countries over time that we have chosen. Second, the objective is to collapse

the variety of target specifications into the essential informational content that the

public is able to understand in the context of noisy information and conflicting signals

(Demertzis and Viegi, 2008, 2009). Therefore, in the empirical analysis, we merge

categories (iii) and (iv) into ’hybrid targets’. Third, we include also three central banks

that never officially adopted inflation targeting as a a framework for the conduct of

monetary policy, namely the United States, the euro area and Switzerland. However,

the inflation targets can be classified and the policy framework seems mature enough

to include these countries in the empirical analysis.

Note that two sets of countries are excluded from the analysis. First, inflation

targeting countries that have changed their target level between 2018 and 2020 are

excluded, as long-term expectations might still be affected by target changes.5 Also,

IT-countries with stable target values for which Consensus data is not available do not

enter the empirical analysis.6

Tab. A.2 in the Appendix provides all details regarding our classification choices.

Fig. 1 gives a snap shot of inflation objectives as of April 2020, while Tab. A.1 in the

Appendix shows summary statistics of inflation targets of the 29 countries covered in

the analysis over time from Q2 2005 to Q1 2020. A couple of observations stand out.

Despite some heterogeneity, there is convergence toward an inflation objective of two

4The sample of AE cover Australia, Canada, Czech Republic, euro area, Japan, New Zealand,
Norway, South Korea, Sweden, Switzerland, United Kingdom and United States. The sample of
EME contains Albania, Armenia, Chile, Colombia, Guatemala, Hungary, India, Israel, Mexico, Peru,
Poland, Philippines, Romania, Serbia, South Africa, Thailand and Turkey.

5This applies to Brazil, Costa Rica, Dominican Republic, Georgia, Indonesia, Kazakhstan,
Ukraine, and Uruguay.

6Consensus data is unavailable for Ghana, Iceland, Jamaica, and Uganda, which are all inflation
targeting countries.
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Figure 1: Quantitative inflation targets

(a) AE sample (b) EME sample

Notes: Quantitative targets as of Q1 2020 of 11 AE countries (panel a) and 17 EME countries
(panel b). Switzerland and the United States are the only countries not classified as official inflation
targeters. Missing from the AE sample is the euro area with an inflation objective of below, but close
to, 2 percent, which cannot be translated into a specific number without controversy.

to three percent among central banks (Hammond, 2012). Second, there is significant

cross-country variation with respect to the adoption of a point target versus a target

range and hybrid versions. However, the majority of observations falls within the class

of hybrid targets, which are dominated by point targets with a tolerance band. Fig. A.1

and Fig. A.2 in the Appendix document that there is also considerable intertemporal

variation, as some central banks introduced or abandoned tolerance bands and point

targets as part of the evolution of their monetary policy strategy. Examples include,

but are not limited too, the cases of Sweden or New Zealand. Sweden started out in

early 1993 by adopting a point target of 2 percent with a tolerance band of +/− 1

percent. In May 2010, the executive board of the Rijksbank abandoned the tolerance

band, only to reintroduce it under the name of a variational band in September 2017.

New Zealand operated with a range target from 1990 onward, with explicit focus on

the midpoint being introduced in September 2012 (Lewis and McDermott, 2016).

3.2 Estimating distribution functions for anchoring measures

For the computation of inflation risk measures as defined in equations (2.6) to (2.8),

we estimate parametric density functions using sample moments of the cross-sectional

distribution of point forecasts from private sector forecasts collected by Consensus.

The survey is conducted across a wide range of countries. The survey cover-

ing long-term forecasts is available at biannual frequency from October 1989 on-
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ward with surveys conducted typically in April and October over forecast horizons

of h = 0, 1, 2, 3, 4, 5, 6− 10 years. The survey frequency changed to quarterly in April

2014, the survey then being conducted in January (Q1), April (Q2), July (Q3) and

October (Q4). The underlying data characterizes fixed-event forecasts for specific cal-

endar years. The forecast horizon thus changes in every survey round. We apply a

fixed-horizon transformation to the data, extending the formula provided by Dovern,

Fritsche, and Slacalek (2012) to a multi-year horizon

x̂t+y·12|t =
k

y · 12
xt+k|t +

y · 12− k
y · 12

xt+y·12+k|t

with k ∈ {(y − 1) · 12 + 1, (y − 1) · 12 + 2, ..., (y − 1) · 12 + 12} .

We cover fixed-horizon forecast from years y = 2, 3, 4, 5 and 6, where the last series is

a weighted average out of inflation forecasts over the five year horizon and the 6 to 10

years horizon.

Let MPF h
jit(x) denote the mean point forecast of panelist j in country i at time

t of realizations of variable x over the forecast horizon h. Unfortunately, the micro

data of all panelists mean point forecasts are not available from Consensus long-term

forecasts.7 However, as of Q2 2005 Consensus publishes the sample mean, the sample

standard deviation, the lowest and the highest mean point forecast of the survey

sample. To clarify the underlying data, we use the following notation:

µhit = Et[MPF h
it ] =

1

N

N∑
j=1

MPF h
jit (3.1)

σhit =

√√√√ 1

N − 1

N∑
j=1

(MPF h
jit − µhit)2 (3.2)

lowhit = min
[
MPF h

1it, ...,MPF h
Nit

]
(3.3)

highhit = max
[
MPF h

1it, ...,MPF h
Nit

]
(3.4)

Fig. 2 documents substantial cross-sectional disagreement and skewness over the

sample period. Plotted are the cross-country evolution of the median and percentiles

of disagreement, measured as the standard deviation across panelists, and skewness.

We measure skewness in country i in period t at horizon h by the following ratio

Shit =
(highhit − µhit)− (µhit − lowhit)

highhit − lowhit
. (3.5)

7Consensus provides micro data for panelists participating in the monthly survey of projections
for the current and next calendar year, which we use for bench-marking our results below.
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Figure 2: Disagreement and skewness in long-term inflation point forecasts

(a) Disagreement, 6 yrs ahead (fixed-horizon) (b) Skewness, 6 yrs ahead (fixed-horizon)

Notes: Reported is the evolution of disagreement and skewness across countries for long-term inflation point forecasts.
Disagreement is measured as sample standard deviation, skewness is approximated by the relative position of the mean
to lowest and highest sample observations, see eq. (3.5) in the main text.

The skewness ratio provides insights into the relative position of the mean with respect

to the two most extreme survey responses. When the ratio is high, skewness tends

to be positive, while skewness is low or negative if the ratio drops. Equation (3.5) is

inspired by quantile-based measures of skewness, for example Bowley’s robust measure

of skewness (Bowley, 1920). However, given that we do not know the median or

percentiles, it is just an approximation to more conventional measures of skewness.8

Given the high amount of asymmetry reflected in Fig. 2(b), we consider two candi-

dates for parametric continuous density functions to be fitted to the available infor-

mation on the cross-sectional distribution, namely the generalized beta distribution

FB(a, b, l, r) and the skew t−distribution FJF (µ, σ, a, b). Both density functions are

based on four parameters, highly flexible, and provide numerous examples in the ap-

plied economics and finance literature.9 They differ to the extend that the generalized

beta is defined over the closed support governed by two parameters [l, r], while the

8Tab. B.1 in the Appendix shows the correlation of the skewness ratio (3.5) and conventional
measures of skewness computed from available micro data at a shorter forecast horizons. All measures
are highly correlated, fostering our confidence in the skewness ratio.

9Examples for the generalized beta distribution can be found in the fitting of bins of inflation
projections (Engelberg, Manski, and Williams, 2009; Boero, Smith, and Wallis, 2015; Grishchenko,
Mouabbi, and Renne, 2019). The skew t−distribution was employed by Adrian, Boyarchenko, and
Giannone (2019) and Ganics, Rossi, and Sekhposyan (2020).
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skew t−distribution is defined on R.

To test which family of distribution functions fits the data best, we take a two step

approach. In a first step, we evaluate the goodness of fit using actual panelist responses

over the next-year forecast horizon. We estimate density functions F̂ ∗B(a, b, l, r) and

F̂ ∗JF (µ, σ, a, b) using maximum-likelihood estimation. An asterisk denotes a distribu-

tion estimated based on the full sample of survey responses. We compare the outcome

with a Kolmogorov-Smirnoff (KS) test. Details and results are provided in Appendix

B. Both families of continuous density functions fit the data well. However, we de-

cide to proceed with the skew t−distribution based on the better performance in the

KS-test. Furthermore, we prefer the property of the skew t-family not to require the

restriction of the underlying support.

In a second step, we apply simulated method of moments (SMM) estimation to fit

a sequence of skew t−distributions to available limited data of cross-sectional point

forecasts over horizons from two to six years ahead. We target five moments, the mean,

the standard deviation, the skewness ratio (3.5), and the location of the lowest and

highest reported inflation forecast in the estimated density function. While the first

three moments are straightforward, the last two moments use an intermediate result

from step 1. Specifically, for the estimated distribution functions where we have a full

sample, F̂ ∗JF (µ, σ, a, b), we recover the percentile of the lowest and highest observation

across panelists in a vector P low
i (F̂ ∗JF ) and P high

i (F̂ ∗JF ), respectively. Fig. C.1 in the

Appendix shows the histogram of these two vectors. The histograms feature a mode

around the 3rd percentile in case of lowest survey responses, and around the 97th

percentile in case of highest survey responses. Thus, ML-estimation attributes little

probability density outside the min-max range of survey answers.10 We fit a kernel

density to the vector P low
i (F̂ ∗JF ),

f̂Plow(x) =
1

Nω

N∑
i=1

K

(
x− xi
ω

)
,

where N is the number of observations, xi are the percentiles in the vector P low
i (F̂ ∗JF ),

ω the bandwidth and K(·) is the kernel smoothing function, which we choose to be a

normal. We do the same for the location of high observations, obtaining f̂Phigh(x).

We then exploit the kernel density in the SMM approach of step 2 as follows. First,

we compute the percentile of data points lowhit and highhit from the candidate distri-

bution FJF (θ), obtaining simulated percentiles P̃i(low
h
it) and P̃i(high

h
it), respectively,

10The well-defined mode for the location constraint of high and low observations is another argu-
ment an favor of the skew t−distribution.
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both conditional on FJF (θ). Second, we compute the empirical pdf from the respec-

tive kernel density at point f̂P(·)(P̃i(·)), and subtract it from the highest density at the

mode of the respective kernel density. For the case of lowest observations, we use the

following notation

∆f̂Plow(P̃i(low
h
it) | FJF (θ)) ≡ f̂Plow(mode)− f̂Plow(P̃i(low

h
it) | FJF (θ)), (3.6)

which is analogue for the highest observation. We refer to (3.6) as the location con-

straint. The value of the location constraint is smallest, the closest is the percentile

of lowhit in the candidate distribution to the mode of the kernel density. The intuition

behind the inclusion of the location constraint in the estimation procedure is to use

the location of lowest and highest sample responses in estimated parametric density

functions obtained from micro data as a penalty function to inform the estimation

process for long-term forecasts, where this information is missing. The resulting SMM

estimator takes the form

θ̂(W ) = arg min
θ

[
ψ̂data − ψ̂sim(θ)

]′
W
[
ψ̂data − ψ̂sim(θ)

]
, (3.7)

where θ = (µ, σ, a, b), and

ψ̂data =


µhit

σhit

Shit

0

0

 , and ψ̂sim =


µ̃ | FJF (θ)

σ̃ | FJF (θ)

S̃ | FJF (θ)

∆f̂Plow(P̃i(low
h
it) | FJF (θ))

∆f̂Phigh(P̃i(high
h
it) | FJF (θ))


where a tilde denotes the simulated sample moment from the candidate distribution

FJF (θ). Let us further clarify how we compute the skewness ratio S̃ in our simulations.

In line with the modal value of the kernel densities of the location of highest and lowest

observations using micro data (Fig. C.1), we take the 3rd and 97th percentiles of the

density function FJF (θ), respectively, and compute the skewness ratio as

S̃ | FJF (θ) =
(P97 | FJF (θ)− µ̃ | FJF (θ))− (µ̃ | FJF (θ)− P3 | FJF (θ))

P97 | FJF (θ)− P3 | FJF (θ)
.

Given that we want to fit more moments than there are parameters to be estimated,

the model is over-identified and we need to specify a weighting matrix W . We employ

a matrix W that contains the inverse standard deviation of sample moments along the

main diagonal. The estimator (3.7) is minimized using a global search algorithm with
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multiple starting points in order to insure that a global minimum is found.

Figure 3: Densities and anchoring measures, euro area

(a) 2-year, fixed-horizon (b) 6-year, fixed horizon

(c) Percentiles of F̂JF (d) Expectations anchoring measures

Notes: The skew t−distribution FJF (µ, σ, a, b) is estimated via simulated method of moments using the cross-sectional
mean, the standard deviation, and the highest and lowest reported values of inflation point forecasts at a given date
t from a panel of professional forecasters. Underlying raw data is from Consensus. Panel (a,b) Example estimated

distribution F̂JF (µ, σ, a, b) for the euro area (Q1 2020).

As a result, we obtain a sequence of estimated continuous density functions F̂JF (µ, σ,

a, b) for each country i, forecast horizon h and date t from which inflation risk measures

DALhit, DAH
h
it and probT hit from equations (2.6), (2.7) and (2.8) can be computed. The
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thresholds are chosen as πi,t = π∗i,t − 0.1 and π̄i,t = π∗i,t + 0.1.

Fig. 3(a,b) illustrates the obtained continuous density functions across point fore-

casts using data from the euro area for forecast horizons of two and six years from

a survey published in Q1 2020. The underlying survey data are plotted as red dots

on the x-axis. The procedure successfully constructs a probability density around the

mean point forecast that is consistent with the moments provided in the survey data.

In this example, medium-term forecasts feature negative skewness, while long-term

forecasts exhibit positive skewness. Disagreement is significantly lower over the longer

forecast horizon of six years. The example further illustrates why the underlying data

does not allow to map the interval chosen for our anchoring measure into the official

target corridors defined in central bank operational frameworks, usually defined as

+/− 1 percentage point around the inflation point target. The reason is that the

underlying data are point forecasts that exhibit significantly lower dispersion than e.g.

individual forecasters’ uncertainty around the point forecast.

Fig. 3(c,d) summarizes some time-series properties of the estimated distribution

functions, the underlying data and the anchoring measures. For the case of the euro

area, there is a trend since mid-2012 toward larger risk of disanchoring due to low

inflation. At the same time, the main anchoring measure seems overall quite stable

over the sample period. We refer to the symmetry property as the time-varying ratio of

upside and downside risk to inflation, which we would like to emphasize and investigate

more systematically in the next section.

Tab. 1 provides summary statistics of the underlying survey data, converted to

fixed-horizon forecasts, and inflation risk measures. To save space, just the forecast

horizons of two, four and six years are reported. Some features of the data deserve to

be mentioned. The consensus among point forecasts is on average more distant from

target for shorter projection horizons and in EMEs. Disagreement is present in the full

sample and in the two sub-samples. Over the two year horizon, forecasters never fully

agree on inflation outcomes, while they occasionally do over a longer forecast horizon

of 6 years. Skewness does seem to average out across the sample of countries.

Turning to the inflation risk measures, we can refine some observations we made

based on the raw survey data. The term structure of our probability measure of

anchored inflation expectations has a positive slope. The term structure of downward

risk to inflation (DAL) is negatively sloped, while upside risk to inflation (DAH) is

stable over all forecast horizons in the full sample. While downside risk to inflation is

more present in the AE sample, upside risk to inflation dominates in the EME sample.
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Table 1: Summary statistics of survey data and inflation risk measures

Full sample AEs EMEs
mean sd min max mean sd min max mean sd min max

Survey data
distance, mean to target (midpoint)

fh2 0.52 0.82 0.00 13.89 0.36 0.34 0.00 1.99 0.72 1.14 0.00 13.89
fh4 0.35 0.47 0.00 5.09 0.24 0.23 0.00 1.18 0.48 0.63 0.00 5.09
fh6 0.30 0.37 0.00 3.53 0.22 0.24 0.00 1.31 0.41 0.46 0.00 3.53

disagreement (sd)
fh2 0.37 0.24 0.06 3.45 0.32 0.12 0.11 1.10 0.43 0.32 0.06 3.45
fh4 0.39 0.27 0.00 2.42 0.35 0.20 0.04 1.24 0.45 0.32 0.00 2.42
fh6 0.37 0.29 0.00 2.45 0.32 0.23 0.00 1.79 0.44 0.34 0.00 2.45

skewness ratio
fh2 0.023 0.21 -0.60 0.65 0.0035 0.20 -0.55 0.63 0.047 0.21 -0.60 0.65
fh4 0.054 0.28 -0.77 0.87 0.028 0.27 -0.72 0.78 0.087 0.28 -0.77 0.87
fh6 0.092 0.30 -0.81 1.72 0.11 0.29 -0.78 1.18 0.071 0.30 -0.81 1.72

Inflation risk measures
probT

fh2 0.15 0.15 0.00 0.83 0.18 0.15 0.00 0.68 0.12 0.14 0.00 0.83
fh4 0.22 0.21 0.00 1.00 0.25 0.19 0.00 0.97 0.19 0.23 0.00 1.00
fh6 0.27 0.25 0.00 1.00 0.32 0.25 0.00 1.00 0.20 0.24 0.00 1.00

DAL
fh2 0.42 0.37 0.00 1.00 0.54 0.35 0.00 1.00 0.27 0.33 0.00 1.00
fh4 0.34 0.30 0.00 1.00 0.41 0.30 0.00 1.00 0.25 0.27 0.00 0.99
fh6 0.32 0.29 0.00 1.00 0.35 0.29 0.00 1.00 0.28 0.27 0.00 1.00

DAH
fh2 0.43 0.37 0.00 1.00 0.29 0.29 0.00 1.00 0.61 0.37 0.00 1.00
fh4 0.44 0.32 0.00 1.00 0.34 0.27 0.00 0.99 0.55 0.35 0.00 1.00
fh6 0.41 0.31 0.00 1.00 0.33 0.26 0.00 0.98 0.52 0.34 0.00 1.00

N 924 510 414

Notes: Summary statistics of survey data from Consensus, converted into fixed-horizon forecasts over horizons
of two, four and six years. The measure of skewness is computed as a ratio of the mean relative to lowest and
highest observations, see (3.5) for details. Inflation risk measures computed from estimated density functions
of a skewness extended t-distribution (Jones and Faddy, 2003) using data from panelists’ cross-sectional point
forecasts. AEs denote the subsample of 12 advanced economies, EMEs denote a subsample of 17 emerging market
economies.

4 Empirical analysis

4.1 Determinants of expectation anchoring

We first examine the determinants of expectation anchoring based on a pooled regres-

sion of the following specification:

Xh
it = c+ β1d

fh3
t + β2d

fh4
t + β3d

fh5
t + β4d

fh6
t + δ1σ

π24m
it + δ2RQit + νY + νi + εit

(4.1)

We regress dummy variables for forecast horizons of three to six years on a set of depen-

dent variables X in country i at forecast horizon h. All regressions contain a measure

for the regulatory quality (RQ) from the World Bank’s Worldwide Governance Indi-

cators (WGI) and a rolling window standard deviation of realized headline consumer

price inflation with a backward looking horizon of 24 months (σπ24m). Further, the

model includes a full set of year dummies (νY ) and country-specific fixed effects (νi).
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The reference group, captured by the constant, is the cross-country average value of

the variable of interest at the two year forecast horizon.

Tab. 2 shows the results. The term-structure of anchoring is upward sloping for both

anchoring measures, namely the absolute distance of mean point forecasts with respect

to the target midpoint (distAbs) in column (1), and the probability measure probT in

column (4). This is an important characteristic of well-anchored inflation expectations,

which revert back to target over time in the sample of countries considered.

Volatility of realized inflation has the expected effect on the distance to target

and the probability to be on target. Periods of high volatility make it harder to be

close to target. In line with the findings of Capistran and Timmermann (2009), a

one standard deviation increase in inflation volatility raises the dispersion of inflation

forecasts, captured here by the standard deviation in column (2), by 0.180 which is

a quantitatively significant amount. The term-structure of disagreement is slightly

hump-shaped, which is consistent with previous findings (Andrade et al., 2016).

Regulatory quality has the expected positive effect on the level of anchoring.11 It

also lowers forecast dispersion. Regulatory quality is associated with a substantially

lower skewness, higher risk of below target inflation and lower risk of above target

inflation. This likely reflects that countries with better developed institutions had

lower inflation outcomes over the sample under consideration.

Asymmetry, here captured by the skewness ratio from eq. (3.5), is negligible in

the pooled model captured by the insignificant constant in column (3). As evident

from Tab. 1, skewness is a feature in the cross-section of the data, but seems to

average out in the aggregate. Inflation volatility does not affect skewness. Longer

forecast horizons are associated with slightly more positive skewness, implying an

upward sloping term structure of skewness. This is consistent with downside and

upside risk to the inflation outlook. While downside risk to inflation in column (5)

attenuates with higher inflation volatility, inflation volatility amplifies upside risk, see

column (6). The term structure of the two disanchoring measures feature therefore

an interesting property: while DAH is stable over different forecast horizons, DAL is

downward sloping, thus contributing to the increase in the probability measure around

target. One might speculate whether this is due to predominantly disinflationary

shocks over the sample period under consideration, leading to a ’targeting from below’.

In Section 4.3 we consider upside and downside deviations of realized inflation from

the inflation target separately in order to analyze this question in more depth.

11We use the measure proposed by Kaufmann, Kraay, and Mastruzzi (2010) who give the following
definition: ”Regulatory quality captures perceptions of the ability of the government to formulate and
implement sound policies and regulations that permit and promote private sector development.”
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Table 2: Determinants of inflation risk measures

(1) (2) (3) (4) (5) (6)
distAbs stdev skewness ratio probT DAL DAH

sd infl. (24m) 0.374∗∗∗ 0.180∗∗∗ 0.00103 -0.000374 -0.0497∗∗∗ 0.0501∗∗∗

(0.0130) (0.00619) (0.00710) (0.00536) (0.00821) (0.00802)

Regulatory quality -0.169∗∗∗ -0.0747∗∗∗ -0.0270∗∗∗ 0.130∗∗∗ 0.0888∗∗∗ -0.219∗∗∗

(0.0125) (0.00598) (0.00688) (0.00518) (0.00794) (0.00776)

dfh3 -0.127∗∗∗ 0.0159 0.0159 0.0469∗∗∗ -0.0538∗∗∗ 0.00693
(0.0224) (0.0107) (0.0122) (0.00925) (0.0142) (0.0138)

dfh4 -0.170∗∗∗ 0.0276∗∗∗ 0.0318∗∗∗ 0.0685∗∗∗ -0.0737∗∗∗ 0.00517
(0.0224) (0.0107) (0.0123) (0.00925) (0.0142) (0.0138)

dfh5 -0.198∗∗∗ 0.0182∗ 0.0550∗∗∗ 0.0964∗∗∗ -0.0887∗∗∗ -0.00775
(0.0224) (0.0107) (0.0123) (0.00925) (0.0142) (0.0138)

dfh6 -0.215∗∗∗ 0.00658 0.0737∗∗∗ 0.115∗∗∗ -0.0962∗∗∗ -0.0190
(0.0224) (0.0107) (0.0123) (0.00926) (0.0142) (0.0139)

Constant 0.427∗∗∗ 0.290∗∗∗ 0.0270 0.00915 0.302∗∗∗ 0.689∗∗∗

(0.0447) (0.0214) (0.0245) (0.0185) (0.0283) (0.0277)

adj. R-squared 0.28 0.27 0.04 0.18 0.09 0.23
N.Obs 4483 4483 4435 4483 4483 4483
year dummies Yes Yes Yes Yes Yes Yes

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Robust standard errors reported
in parentheses. Results for model (4.1) via pooled OLS, dependent variables are the absolute distance
of realized inflation to target (distAbs), the cross-sectional standard deviation (stdev, as reported in the
underlying Consensus data), the skewness ratio and the three probability-based measures of anchoring
obtained from estimated distribution functions (probT , DAL, DAH).

4.2 Anchoring and inflation target formulations

This section investigates the main question of the paper. First, we test whether the

formulation of the inflation objective with a numerical definition changes anchoring.

We estimate an econometric panel model of the form

probT hit = c+ βdnumTargetit + δ1σ
π24m
it + δ2RQit + νi + νY + εit. (4.2)

The main variable of interest is a dummy dnumTarget which takes the value of one if

there is a numerically defined inflation target. We add two controls to this baseline

specification. First, we include a rolling window standard deviation of realized head-

line consumer price inflation with a backward looking horizon of 24 months (σπ24m).

This captures broadly the economic conditions and serves as a control for the business

cycle. Second, we include regulatory quality (RQ) as a proxy variable for the conduct

of policies in each country within the baseline specification. The main motivation for

this is a concern about an omitted variable bias if the choice of the target formulation

is correlated with the overall quality of macroeconomic stabilization policies. At the

same time, we mitigate possible concerns about endogeneity by controlling for reg-
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ulatory quality.12 All remaining time-invariant country differences are accounted for

by country-specific fixed effects νi. Finally, a full set of year dummies νY account for

common time trends, like shocks to global inflation and their implications for fore-

casts. Galati, Poelekke, and Zhou (2011) show evidence that the collapse of Lehman

Brothers has lead to changes in survey-based longer-term inflation expectations in the

United States and the United Kingdom. Our sample includes an unbalanced panel of

29 countries for 15 years of quarterly data from Q2 2005 to Q1 2020.

Figure 4: Anchoring effects of numerically defined inflation targets (effects on probT )

Notes: Point estimates and 90% confidence intervals based on Driscoll and Kraay (1998) standard errors. Panel (a).

Coefficient estimates for model (4.2) as of Tab. D.1.A in the Appendix for a numerically defined target (dnumTargetit ),
with the anchoring measure probTit being the dependent variable. Panel (b). Coefficient estimates for model (4.3) as

of Tab. D.1.B in the Appendix on presence of a target range or tolerance band (dumnumRangeit ) and a focal point or

point target (dnumPointit ). All equations are estimated separately for each forecast horizon from h = 2 to h = 6 years
based on a fixed-horizon approximation.

Model (4.2) is estimated separately for each forecast horizon, the reference group is

characterized by all target formulations without a precise numerical target definition,

which feature a mere definition of price stability. Standard errors are computed follow-

ing the procedure proposed by Driscoll and Kraay (1998), which are robust to spatial

dependence, heteroscedasticity and serial correlation. Fig. 4(a) present the results for

the main coefficient of interest β for dependent variable X = probT . Numerical target

formulations do not have a significant effect on anchoring per se. Over horizons of

12We also tested a specification in which we replaced regulatory quality by government effective-
ness, yielding similar results. Due to possible multicollinearity, we do not include both measures
simultaneously.
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5 and 6 years, there is even a significant negative effect, albeit this is quantitatively

small. These findings are in line with Bundick and Smith (2018), who have found that

anchoring improved in the US after the introduction of a numerical target, while there

was no improvement in the cases of Japan. Sensitivity results show that the effect is

more in favor of numerical target definition once countries with a poor inflation track

record, specifically Japan and Turkey, are dropped from the sample.

Next, we differentiate between range targets and point targets. We group all target

definitions containing a numerical definition of a range or tolerance band into a variable

dnumRangeit , while all target definitions with a reference to a point target or focal point

are grouped into a variable dnumPointit . Note that the two categorical variables are not

mutually exclusive in the case of hybrid target formulations. We estimate the following

model:

probT hit = c+ β1d
numRange
it + β2d

numPoint
it + δ1σ

π24m
it + δ2RQit + νi + νY + εit (4.3)

Results in Fig. 4(b) show the estimated coefficients β1 and β2 for dependent variable

X = probT . While the presence of an explicit range in the target formulation lowers

the anchoring measure, a target definition which includes a reference to a numerical

point increases the probability mass of point predictions around target. We provide

the p-values of an F-test for equality in the two coefficients (H0 : β1 = β2) in Tab. D.1

B. in the Appendix. The test clearly rejects the null hypothesis of equal coefficients

for horizons of three to six years. We thus conclude that there is a positive effect of an

explicit reference to a point target on expectation anchoring. The effect is substantial,

as it is associated with an anchoring measure 25 to 69 percent higher compared to the

reference group.

We next explore the question of differential effects of numerical target formulations

in more detail, exploiting more refined target formulations. To this end, only countries

and episodes with a numerical target definition are compared.13 We estimate the

following model

Xh
it = c+ β1d

hybrid
it + β2d

point
it + δ1σ

π24m
it + δ2RQit + νi + νY + εit, (4.4)

where dhybird contains all range targets with reference to a focal point and point targets

with a tolerance band. dpoint is gauging the effect of pure point targets. The reference

group is the group of numerical range targets without emphasis on a focal point. These

classifications are mutually exclusive. Different dependent variables are considered for

13This excludes the euro area from the sample, and observations of the United States before March
2012 and Japan before the introduction of numerical target in February 2012.
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X.

Fig. 5(a) shows the results for the main coefficients of interest (β1, β2) of model (4.4)

for dependent variable X = probT .14 The result confirms that a reference to a focal

point improves anchoring along all forecast horizons. The quantitative difference is

sizable, in particular for medium-term horizons. Pure point targets have a slightly

higher coefficient than hybrid strategies at the longest forecast horizon of six years,

while hybrid definitions have a larger coefficient at shorter horizons. For the long-term

horizon of 6 years, point targets are associated with a 90 percent higher probability of

point predictions close to target compared to range targets, while hybrid targets fea-

ture a 60 percent higher probability. However, the coefficients of dhybrid and dpoint are

never statistically different from each other according to the results from a correspond-

ing F-test. Thus, we conclude that these two target types have a similar beneficial

unconditional effect on anchoring.

Next, we are interested in the differential effects of target formulations on the sym-

metry of the distribution of point forecasts around the inflation objective, a novel

aspect in the empirical analysis of expectation anchoring. Fig. 5 (b) presents effects of

the dummy variables on downside risk to inflation, while panel (c) contains effects on

upside risk to inflation. Hybrid targets feature lower upside risk, while also exhibiting

higher downside risk. We conclude that hybrid target formulations are associated with

a downward shift in the entire cross-sectional distribution of point forecasts compared

to target ranges. This effect is much less pronounced for point targets.

4.3 Inflation performance, anchoring and target formulations

Until now, we documented unconditional effects of inflation target formulations on the

cross-sectional distribution of point forecasts. However, there might also be substantial

differences over time associated with target formulations conditional on the economic

context. A first indication is presented in Fig. 2 which shows that the shape, specifically

skewness, is not stable over time, but features persistent fluctuations with periods of

positive and negative skewness. Motivated by this observation, this section explores

systematically the relation between target formulations, inflation performance and

expectations anchoring. Following Neuenkirch and Tillmann (2014), we construct

an indicator that captures the average deviation of realized inflation from target in

14See Tab. D.2 for the full regression table.
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Figure 5: Disanchoring and numerically defined inflation targets

Notes: Point estimates and 90% confidence intervals based on Driscoll and Kraay (1998) standard errors. Coefficient
estimates as of Tab. D.2 and Tab. D.3 in the Appendix for a hybrid target (dhybrid) and a point target (dpoint) on
the anchoring measure probT (Panel a), downside risk to inflation DAL (Panel b), and upside risk to inflation DAH
(Panel c) in model (4.4). All equations are estimated separately for each forecast horizon from h = 2 to h = 6 years
based on a fixed-horizon approximation.

country i in period t as

CLit =
1

T − 1

t−1∑
s=t−T

(πis − π∗is) | πis − π∗is |,

where the backward looking rolling window covers T = 60 months. CL denotes credi-

bility losses. While we borrow the notation from Neuenkirch and Tillmann (2014), we

interpret the indicator more broadly and do not limit it to credibility losses. Persistent

deviations might also arise if economies get hit by very persistent shocks, a sequence

of shocks with the same sign, or if a central bank pursues a secondary objective. The

relatively long backward looking reference period is motivated with the intention to
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distinguish target misses due to interest rate smoothing from target misses due to

possibly lower commitment for the inflation objective. While we are interested in the

latter, also the former generates persistent target misses. Let us further define

CL
(+)
it =

CLit, if CLit ≥ 0

0, otherwise

and CL
(−)
it =

| CLit |, if CLit ≤ 0

0, otherwise

to capture persistent deviation due to periods of an inflation shortfall CL
(−)
it and

inflation overshooting CL
(+)
it with respect to the midpoint of the inflation objective.

Tab. D.4 in the Appendix presents summary statistics on the credibility loss indicators,

revealing significant differences in the characteristics of CL
(−)
it and CL

(+)
it . Credibility

losses due to overshooting are almost twice as high on average and exhibit 3.5 times the

standard deviation of inflation shortfalls. In the empirical models below, we therefore

use standardized series of CL(+) and CL(−) with mean zero and a standard deviation

of one. To quantify the effects of persistent target misses on expectation anchoring,

we specify the following empirical model:

Xh
it = c+ β1CL

+
it + β2CL

−
it + γ1σ

π24m
it + γ2RQit + νi + νY + εit (4.5)

Tab. 3 presents the results for forecast horizons of four and six years on various

dependent variables. To get an idea of the relationship between the credibility loss

indicator and contemporaneous inflation, column (1) shows that overshooting is related

to contemporaneous inflation realizations above target, while shortfall has a negative

sign but is not statistically significant.

The two credibility loss indicators are associated with asymmetric effects on anchor-

ing properties. Credibility loss due to inflation shortfalls are associated with signif-

icantly lower probability of inflation being close to target, while credibility loss due

to overshooting does not compromise expectations anchoring at conventional levels of

statistical significance, cf. columns (2) and (3). Considering the distance of the mean

prediction from target, both inflation shortfalls and overshooting have statistically

significant effects, shifting the mean forecast in the expected direction, cf. column

(8) and (9). The effect is generally larger for longer forecast horizons. Meanwhile,

credibility losses do shift the tails of the cross-sectional distribution in the expected

direction, cf. columns (4)-(7).

Our findings are consistent with forecasters’ responses from a survey asking what
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Table 3: Effect of persistent target deviations on expectation anchoring

(1) (2) (3) (4) (5) (6) (7) (8) (9)
π − π∗ probT(4) probT(6) DAL(4) DAL(6) DAH(4) DAH(6) Mean(4) Mean(6)

CL(−) -0.103 -0.0222∗∗ -0.0301∗∗∗ 0.0632∗∗∗ 0.0850∗∗∗ -0.0410∗∗∗ -0.0549∗∗∗ -0.0407∗ -0.0344∗∗∗

(0.0831) (0.0108) (0.0104) (0.0146) (0.0102) (0.0149) (0.00858) (0.0232) (0.0125)

CL(+) 0.722∗∗∗ -0.00636 -0.00169 -0.00118 -0.0373∗∗∗ 0.00754 0.0389∗∗∗ 0.354∗∗∗ 0.233∗∗∗

(0.201) (0.00848) (0.00735) (0.0126) (0.00891) (0.0145) (0.0110) (0.0561) (0.0275)

sd infl. (24m) -0.151 -0.0106 -0.0311 -0.0303 0.0182 0.0409 0.0129 0.0933 0.0236
(0.260) (0.0226) (0.0204) (0.0258) (0.0209) (0.0247) (0.0179) (0.0681) (0.0344)

Regulatory quality 0.307 0.00819 -0.117 0.0930 0.276∗∗∗ -0.101 -0.160∗ -0.919∗∗∗ -0.761∗∗∗

(0.505) (0.0698) (0.0842) (0.0586) (0.0930) (0.0749) (0.0847) (0.165) (0.100)

Constant -0.0425 0.174∗∗ 0.353∗∗∗ 0.235∗∗∗ 0.0694 0.592∗∗∗ 0.578∗∗∗ 3.582∗∗∗ 3.359∗∗∗

(0.542) (0.0680) (0.0780) (0.0692) (0.0988) (0.0758) (0.0941) (0.153) (0.100)

country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
N.Obs 3978 827 825 827 825 827 825 833 831
N.Countries 28 28 28 28 28 28 28 28 28
adj. R-squared 0.31 0.06 0.06 0.16 0.21 0.19 0.19 0.55 0.51

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Standard errors based on Driscoll and Kraay
(1998) reported in parentheses. Results for model (4.5), dependent variables are the contemporaneous inflation gap
(π − π∗), the expectations anchoring (probT ), downside risk to inflation (DAL), upside risk to inflation (DAH) and
the Consensus mean inflation expectation (Mean). All equations are estimated separately for each forecast horizon of
4 and 6 years based on a fixed-horizon approximation.

influences their long-term inflation projections. Vincent-Humphreys, Dimitrova, and

Falck (2019) present data showing that while 80 percent consider the central banks

inflation target, 55 percent also use trends in actual inflation to form longer-term

expectations. Our empirical results suggest that the cross-section of professional fore-

casters attaches different weights to the inflation target and the recent inflation track

record, leading to changes in the tails of the cross-sectional distribution over time

(Patton and Timmermann, 2010).

Our finding that tails of the distribution (DAL, DAH) respond more strongly to

the credibility loss terms then central tendency (probT ) is consistent with models of

information frictions in the process of expectation formation. In particular, models

with noisy information as in Woodford (2002), Sims (2003) and Mackowiak et al.

(2009) predict that gathering information has a higher return for agents who’s current

prediction is more distant to the signal, i.e. realized inflation. It is, thus, more

likely that these agents revise their forecast and bring it closer to current inflation

trends, as shown by the high coefficients on CL(−) for DAL, and on CL(+) for DAH.

Coibion and Gorodnichenko (2015) have documented such information frictions in the

mean forecasts of Consensus data, while the results shown here can be considered as

complementary and extending their findings to tails in the cross-sectional distribution.

Ehrmann (2015) documents lower expectations anchoring during periods of inflation

persistently undershooting the inflation target, while persistent target overshooting

is not lowering anchoring. He considers short-term inflation expectations of up to

one year ahead forecasts, measuring the effect of pass-through of current inflation on
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inflation expectations, forecasters’ disagreement and forecast revisions. His sample

covers ten industrialized economies from January 1990 to December 2014. Our results

confirm his findings for long-term inflation expectations, a later sample period and a

country sample that includes EMEs.

In a final step, we want to test whether the shift in the tails of the distribution

conditional on persistent deviation from a central bank’s inflation target depends on

the target formulation. To this end, we interact the credibility loss terms with our

dummy variables of hybrid inflation targets and pure point targets, giving rise to the

following model:

probT hit =c+ β1

[
CL−it × d

hybrid
it

]
+ β2

[
CL+

it × d
hybrid
it

]
+ δ1d

hybrid
it

+ β3

[
CL−it × d

point
it

]
+ β4

[
CL+

it × d
point
it

]
+ δ2d

point
it

+ γ1CL
+
it + γ2CL

−
it + γ3σ

π24m
it + γ4RGit + νi + νY + εit (4.6)

Fig. 6 shows the results. Panel (a) presents the conditional effect on downside

risk to inflation during periods of persistent inflation undershooting if the central

bank operates with a hybrid or point target versus a range target. The negative

coefficient shows that the adverse consequences of a rise in downside risk to inflation

can be mitigated. While both target formulations with a reference to a focal point

are beneficial, pure point targets have larger and more meaningful effect than hybrid

targets, in particular over longer forecast horizons. We interpret those findings as

consistent with theories showing that range targets and tolerance bands are perceived

by professional forecasters as zones where monetary policy is less active (Orphanides

and Wieland, 2000). The results are further inconsistent with the hypothesis that

target ranges are fostering central bank credibility (Demertzis and Viegi, 2009).

Moving to Fig. 6(b), we find also beneficial effects on including a reference to a focal

point in target formulations during periods of persistent overshooting. The negative

coefficients again indicate that the tails of the cross-sectional distribution of forecasters

are more stable, leading to a less strong increase in upside risk to the inflation outlook

during periods of persistent inflation overshooting. Here, hybrid target formulations

and point targets have quantitatively similar effects.
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Figure 6: Risk of disanchoring conditional on target formulation and persistent target
deviation

Notes: Point estimates and 90% confidence intervals based on Driscoll and Kraay (1998) standard errors. Coefficient
estimates for model (4.6) as of Tab. D.5 in the Appendix for the interaction terms of interest of the measure of
persistent deviation CL± and the hybrid target dhybrid and a point target dpoint, respectively. All equations are
estimated separately for each forecast horizon from h = 2 to h = 6 years based on a fixed-horizon approximation.

5 Robustness

We consider a number of robustness checks for the main models of interest. Let

us first reconsider the result on the presence of a numerically defined target from

model (4.2). Tab. 4 shows the coefficient on the dummy dnumTarget in alternative

model specifications. The first row restates the baseline result for convenience. We

consider the absolute distance of the mean point forecast to target as an alternative

to our probability-based measure from estimated density functions. The results are

confirmed, meaning that a numerical target is not beneficial for anchoring for forecast

horizons of four to six years. Considering a specification with only advanced economies,

the results are slightly weaker compared to the baseline, but do hold qualitatively.

However, the results do change when we exclude Japan and Turkey from the sample,

two countries which have the weakest inflation track record in the sample. In this

case, the introduction of a numerical point target does improve anchoring for short

forecast horizons of two years. However, the coefficient remain insignificant for longer

forecast horizons. In our view, this does not dramatically change our conclusion that

numerical target definitions do not per se improve anchoring. The baseline results are

further robust to dropping inflation volatility and regulatory quality as controls, and

dropping year dummies.
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Table 4: Robustness: explicit numerical target (dnumTarget)

(1) (2) (3) (4) (5)
(h=2) (h=3) (h=4) (h=5) (h=6)

Baseline 0.0161 -0.00110 -0.0316∗ -0.0408∗∗∗ -0.0527∗∗∗

(0.0274) (0.0235) (0.0162) (0.0123) (0.0155)

Absolute distance, mean to target -0.0483 0.0541 0.213∗∗ 0.311∗∗∗ 0.231∗∗∗

(0.124) (0.106) (0.0892) (0.0753) (0.0737)

AEs 0.0188 0.0149 0.00169 -0.0142 -0.0477∗∗

(0.0307) (0.0295) (0.0270) (0.0171) (0.0203)

w/o Japan, Turkey 0.0694∗∗ 0.0234 0.00577 -0.00740 -0.0142
(0.0331) (0.0319) (0.0259) (0.0249) (0.0275)

No controls 0.0131 -0.00395 -0.0374∗∗ -0.0473∗∗∗ -0.0560∗∗∗

(0.0252) (0.0208) (0.0169) (0.0117) (0.0169)

No year dummies 0.0332 0.00461 -0.0269∗∗ -0.0293∗∗∗ -0.0225
(0.0208) (0.0187) (0.0121) (0.00964) (0.0138)

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Standard errors based on Driscoll and
Kraay (1998) reported in parentheses. All equations are estimated separately for each forecast horizon of 4 and
6 years based on a fixed-horizon approximation.

Next, we reconsider the effect of a reference to a range and a focal point within the

inflation target formulations as in model (4.3). Tab. 5 shows the results, again with

the baseline at the beginning. If we use the absolute distance of the cross-sectional

mean to the inflation target as our dependent variable, the main message is preserved.

A reference to a numerical focal point is associated with better expectation anchoring,

thus lowering the absolute distance, while a reference to an explicit range is either

neutral compared to a qualitative definition of price stability, or is associated with a

larger absolute difference. If we consider a limited sample of only advanced economies,

the baseline results gets stronger by an overall increase in the magnitude of estimated

coefficients. The baseline results are also robust to the exclusion of Japan and Turkey

from the country sample, excluding all control variables, and the exclusion of year

dummies.

Finally, let us reconsider the effects of hybrid and point target formulations from

model (4.4). Tab. D.8 in the Appendix shows that hybrid point targets and point tar-

gets improve anchoring compared to target ranges in all considered robustness spec-

ifications by quantitatively similar amounts. Hybrid targets have larger coefficients

at shorter forecast horizon of two years, while point targets have better anchoring

properties at the longer horizon of six years.
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Table 5: Robustness: range/hybrid/point (dnumRange, dnumPoint)

(1) (2) (3) (4) (5)
(h=2) (h=3) (h=4) (h=5) (h=6)

Baseline
dnumRange -0.0523 -0.0830∗∗ -0.108∗ -0.0806∗ -0.0653

(0.0496) (0.0413) (0.0540) (0.0462) (0.0506)

dnumPoint 0.0687∗∗∗ 0.0869∗∗∗ 0.0775∗∗∗ 0.0859∗∗∗ 0.0753∗∗∗

(0.0223) (0.0204) (0.0266) (0.0267) (0.0201)

Absolute distance, mean to target
dnumRange 0.126 0.152 0.113 0.139 0.176∗

(0.237) (0.144) (0.111) (0.0921) (0.0993)

dnumPoint -0.315∗∗ -0.262∗∗ -0.227∗∗ -0.191∗∗ -0.194∗∗

(0.150) (0.129) (0.106) (0.0950) (0.0769)

AEs
dnumRange -0.00866 -0.0324 -0.0528 -0.0223 -0.0232

(0.0490) (0.0378) (0.0500) (0.0484) (0.0583)

dnumPoint 0.107∗∗∗ 0.136∗∗∗ 0.134∗∗∗ 0.149∗∗∗ 0.130∗∗∗

(0.0276) (0.0276) (0.0339) (0.0342) (0.0326)

w/o Japan, Turkey
dnumRange -0.0219 -0.0469 -0.0671 -0.0329 -0.0156

(0.0539) (0.0484) (0.0577) (0.0517) (0.0543)

dnumPoint 0.0984∗∗∗ 0.117∗∗∗ 0.119∗∗∗ 0.132∗∗∗ 0.123∗∗∗

(0.0247) (0.0264) (0.0310) (0.0314) (0.0282)

No controls
dnumRange -0.0503 -0.0858∗∗ -0.108∗∗ -0.0824∗ -0.0705

(0.0471) (0.0389) (0.0514) (0.0441) (0.0499)

dnumPoint 0.0669∗∗∗ 0.0832∗∗∗ 0.0743∗∗∗ 0.0839∗∗∗ 0.0695∗∗∗

(0.0199) (0.0194) (0.0262) (0.0267) (0.0218)

No year dummies
dnumRange -0.0513 -0.0872∗∗ -0.121∗∗ -0.101∗∗ -0.0689∗

(0.0429) (0.0346) (0.0514) (0.0422) (0.0383)

dnumPoint 0.0736∗∗∗ 0.0774∗∗∗ 0.0594∗∗∗ 0.0740∗∗∗ 0.0887∗∗∗

(0.0147) (0.0134) (0.0160) (0.0171) (0.0187)

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Standard errors based on Driscoll and
Kraay (1998) reported in parentheses. All equations are estimated separately for each forecast horizon of 4 and
6 years based on a fixed-horizon approximation.

6 Conclusion

The adoption of a quantitative target for inflation is common practice among central

banks. At the same time, there remains remarkable heterogeneity with respect to the

exact formulation of the inflation target. We classify these into four groups: mere

definitions of price stability, target ranges, hybrid targets, and point targets. Do

alternative inflation target formulations matter for expectations anchoring?

This paper provides evidence that a reference to a numerical target definition per

se does not improve anchoring, while reference to a numerical focal point increase the

degree of anchoring of inflation expectations over horizons of two to six years compared

to central banks with a mere quantitative definition of price stability. Based on a panel
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of 29 countries, we show that a numerical focal point steers inflation expectations

closer to the inflation aim. The probability of inflation point forecasts within a close

interval of +/− 0.1 percentage points around target increases by 70 percent for forecast

horizons of two years and 25 percent for forecast horizons of six years.

Focusing only on the subset of countries operating with a numerical definition of the

inflation objective, we find that the unconditional effects of point targets and hybrid

targets are quantitative significant, increasing the probability of inflation falling within

a narrow interval around the defined objective compared to target ranges. During

periods of persistent deviations of realized inflation from target, we find that tails

in the cross-sectional distribution of point forecasts respond more then the central

tendency, in line with models of information frictions (Coibion and Gorodnichenko,

2015). During such periods, inflation point targets are most successful in limiting

the rise in upside and downside risks to the inflation outlook, while hybrid strategies

have smaller beneficial effects. These results are consistent with the view that range

targets are interpreted by professional forecasters as zones where monetary policy is

less responsive.

The results of this paper contribute to an unsettled debate about pros and cons

of different types of inflation targets (Apel and Clausen, 2017; Chung et al., 2020).

We document that it is common practice for central banks to change elements in the

specification of their numerical inflation target. We do not find substantial uncondi-

tional differences between point targets and hybrid target formulations. At the same

time, there is no evidence for a credibility channel in the data, arising from explicit

tolerance ranges. As a bottom line, this paper suggests that point targets or focal

points should be considered as an important device to improve expectations anchoring

and the balance of risks to the inflation outlook in periods of persistent deviation of

inflation from target.

Some limitations apply to our results. The findings are based on a survey among

professional forecasters who are well informed about central bank objectives and at-

tentive to changes in the operational framework. While the views of professional

forecasters are widely reported in the news and are likely to influence other agents in

the economy (Carroll, 2003), recent research finds that households and firms have a

poor understanding of inflation dynamics and are generally less attentive to central

bank announcements.15 If central bankers want to exploit the inflation target formu-

lation as a policy tool to manage the inflation outlook, then these deficiencies might

call for improved central bank communication (Coibion et al., 2020).

15See Afrouzi et al. (2015), Coibion, Gorodnichenko, and Weber (2019), and Lewis, Makridis, and
Mertens (2020).
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Online Appendix

Anchoring of Inflation Expectations:
Do Inflation Target Formulations Matter?

by Christoph Grosse-Steffen1

A Classification

Table A.1: Summary statistics of inflation targets

mean sd min max groups obs
no numerical target 1.74 .37 1 2 3 71
numerical target 2.5 .73 1 5 28 853
within group of numerical inflation target (classifications)

Range target 2.34 .88 1.5 4.5 9 160
Range with focal point 2.2 .25 2 2.5 2 49
Point with tolerance band 2.74 .76 2 5 16 437
Point target 2.18 .36 1 3 8 207

Note. Summary statistics on the midpoint of the inflation objective for
target classifications. Tab. A.2 provides details on the classification for each
country in the sample.

Figure A.1: Targets for monetary policy, AEs (1)

(a) Australia (b) Canada

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, fh = 6
years. Yellow x=mean point forecast, fh = 2 years. Mean point forecasts are computed using a
fixed-horizon approximation.

1Contact: Banque de France, 31 rue des Petits-Champs, 75001 Paris, France. Email:
christoph.grossesteffen(at)banque-france.fr, tel.: +33 (0)1 42 92 49 42.
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Figure A.1: Targets for monetary policy, AEs (2)

(c) Czech Republic (d) Euro area

(e) Japan (f) South Korea

(g) New Zealand (h) Norway

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, fh = 6
years. Yellow x=mean point forecast, fh = 2 years. Mean point forecasts are computed using a
fixed-horizon approximation.
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Figure A.1: Targets for monetary policy, AEs (3)

(i) Sweden (j) Switzerland

(k) United Kingdom (l) United States

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, fh = 6
years. Yellow x=mean point forecast, fh = 2 years. Mean point forecasts are computed using a
fixed-horizon approximation.
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Figure A.2: Targets for monetary policy, EMEs (1)

(a) Albania (b) Armenia

(c) Chile (d) Colombia

(e) Guatemala (f) Hungary

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, fh = 6
years. Yellow x=mean point forecast, fh = 2 years. Mean point forecasts are computed using a
fixed-horizon approximation.
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Figure A.2: Targets for monetary policy, IT countries (2)

(g) India (h) Israel

(i) Mexico (j) Peru

(k) Philippines (l) Poland

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, fh = 6
years. Yellow x=mean point forecast, fh = 2 years. Mean point forecasts are computed using a
fixed-horizon approximation.
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Figure A.2: Targets for monetary policy, EMEs (3)

(m) Romania (n) Serbia

(o) South Africa (p) Thailand

(q) Turkey

Notes: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target,
following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, fh = 6
years. Yellow x=mean point forecast, fh = 2 years. Mean point forecasts are computed using a
fixed-horizon approximation.
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Table A.2: Target classification

(1) (2) (3) (4) (5) (6)
NoExplAn QuantDef RangeTar Range-Point Point-Tol PointTar IT introdate stable

Advanced Economies (AE)
Australia – – 1993m4 – – – 1993m4 1993m4
Canada – – – – 1991m3 - – 1991m3 1995m1
Czech Republic – – 1998m1-2005m12 – 2006m1- – 1998m1 2005m1
Euro area – 1999m1 - – – – – no IT 1999m1
Japan 1990m1-2006m2 2006m3-2012m1 – – – 2012m2 - 2012m2 1990m1
New Zealand – – 1990m1 - 2011m12 2012m1 - – – 1990m3 1993m1
Norway – – – – – 2001m3 - 2001m3 2001m3
South Korea – – 2004m1-2006m12;

2014m1-2015m12;
– 1998m4-2003m12;

2007m1-2013m12;
2016m1- 1998m3 2001m1

Sweden – – – – 1995m1-2009m12;
2017m10-

2010m1-2017m9 1993m1 1993m1

Switzerland – 1990m1-1999m11 1999m12 - – – – no IT 1990m1
United Kingdom 1990m1-1992m9 – 1992m10-1995m5 – 1995m6-2003m12 2004m1- 1992m10 1992m10
United States 1990m1-2012m2 – – – – 2012m3 - 2020m7 no IT 1990m1

Emerging Market Economies (EME)
Albania – – – – 2009m1- 2009m1 2009m1
Armenia – – – – 2006m1- – 2006m1 2011m1
Chile – – 1991m1-1994m12 – 2001m1- 1995m1-2000m12 1991m1 2001m1
Colombia – – 2003m1-2009m12 – 2010m1- 1999m9-2002m12 1999m9 2010m1
Guatemala – – – 2005m1- – 2005m1 2012m1
Hungary – – – – 2015m3- 2001m6-2015m2 2001m6 2007m1
India – – – 2016m8- – – 2016m8 2016m8
Israel – – 1992m1-1992m12;

1994m1-1998m12;
2000m1-

– – 1993m1-1993m12;
1999m1-1999m12

1997m6 2003m1

Mexico – – – – 2003m1- 1999m1-2002m12 1999m1 2003m1
Peru – – 1994m1-2001m12 – 2002m1- – 1994m1 2002m1
Poland – – 1999m1-2003m12 – 2004m1 – 1998m10 2004m1
Philippines – – – – 2002m1- – 2002m1 2015m1
Romania – – – – 2005m8 – 2005m8 2013m1
Serbia – – – – 2009m1- – 2009m1 2017m1
South Africa – – 2000m2- – – – 2000m2 2000m2
Thailand – – 2000m5-2014m12;

2020m1-
2015m1-2019m12 – – 2000m5 2000m5

Turkey – – – – 2006m1- 2003m12-2005m12 2006m1 2012m1

Notes: Targets for non-official inflation targeting (IT) countries are only considered for United States, United Kingdom, euro area, Japan and Switzerland. Countries reporting
the the IMF’s Annual Report on Exchange Arrangements and Exchange Restrictions (AREAER) to be an inflation targeter, but have changed the target between 2018 and 2020
are excluded from the analysis, as long-term expectations might still respond to changes in the target (Brazil, Costa Rica, Dominican Republic, Georgia, Indonesia, Kazakhstan,
Ukraine, Uruguay). Also, IT-countries with stable target values for which Consensus data is not available are excluded (Ghana, Iceland, Jamaica, Uganda). Source: Related
literature (Castelnuovo, Nicoletti-Altimari, and Rodriguez-Palenzuela, 2003; Mishkin and Schmidt-Hebbel, 2002; Roger, 2009; Hammond, 2012), the IMF’s Annual Report on
Exchange Arrangements and Exchange Restrictions (AREAER) and central bank websites.
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B Goodness of fit with sample data

This section provides details on the first step of the derivation of the continuous density

functions proposed in the paper. This step provides us with two important results.

First, where are the observed highest and lowest observations across panelists located

in an estimated, parameterized distribution function? This information will inform the

location constraint in the simulated method of moments (SMM) estimation. Second,

which family of distribution functions fits the survey data best? For the ’goodness of

fit’ analysis, we fit two parametric models to sample data from consumer price inflation

point forecasts that are available at the shorter forecast horizons. Specifically, we use

in this Appendix raw survey data on the ’next calendar year’ projections.

B.1 Parametric analysis

For the ’goodness of fit’ analysis, we fit two parametric models to panelists’ point

forecasts on consumer price inflation for ’next calendar year’ at a monthly frequency.

We fit the generalized beta distribution and a skew extended t−distribution, labeled

here as skew t. Both distributions share a couple of similarities, namely being highly

flexible and to allow for nonzero skewness. They differ mainly due to the bounded

support of the generalized beta, while the skew t is defined on the whole real line R.

B.1.1 The generalized beta distribution

Let the random variable x be distributed as a generalized beta distribution of param-

eters (a, b, l, r) if (x− l)/(r− l) is distributed as B(a, b). Let FB(x; a, b, l, r) denote the

CDF of the generalized beta for a random variable x ∈ [l, r], then we have

FB(x; a, b, l, r) =


0, if x ≤ l

Beta((x−l)/(r−l);a,b)
B(a,b)

, if l < x ≤ r

1, if x > r

where Beta(x; a, b) is the incomplete Beta function, given by

Beta(x; a, b) :=

∫ x

0

ta−1(1− t)b−1dt.
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The distribution’s PDF is given by

fB(x; a, b, l, r) :=
1

(r − l)B(a, b)

(
x− l
r − l

)a−1(
r − x
r − l

)b−1

I[l,r](x; a, b),

where I(x; ·, ·) denotes the incomplete beta function ratio.

B.1.2 The skew extended t-distribution

For the definition of the skew t, we refer to the distribution proposed by Jones and

Faddy (2003) as in Ganics, Rossi, and Sekhposyan (2020). Let µ in R, σ, a, b > 0 be

parameters, then the distribution’s CDF is defined as

FJF (x;µ, σ, a, b) = I(z; a, b),

with z =
1

2

1 +

(
x−µ
σ

)√
a+ b+

(
x−µ
σ

)2

 .

The distribution’s PDF is given by

fJF (x;µ, σ, a, b) =
1

σ
C−1
a,b (1 + τ)a+1/2(1− τ)b+1/2,

with Ca,b = 2a+b−1B(a, b)(a+ b)
1
2 ,

and τ =
x− µ
σ

(
a+ b+

(
x− µ
σ

)2
)− 1

2

.

B.1.3 Maximum likelihood estimation

We are now ready to perform ML estimation using the next calendar year projections

xjit of panelist j = 1, ..., n for country i in period t as our observed sample data, and

maximizing

θ̂
(JF )
it = argmax

θ
(JF )
it ∈Θ(JF )

∑
lnL̂n(θ

(JF )
it , xjit)

with L̂ = fJF (xjit; θ
(JF )
it )

where the parameter vector collects the four parameters θ
(JF )
it = (µit, σit, ait, bit). In

analogy, we perform ML estimation of the parameter vector of the generalized beta
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distribution as

θ̂
(B)
it = argmax

θ
(B)
it ∈Θ(B)

∑
lnL̂n(θ

(B)
it , xjit)

with L̂ = fB(xjit; θ
(B)
it )

where θ
(B)
it = (ait, bit, lit, rit).

Figure B.1: Histograms of survey data and parametric models

(a) pdf, generalized Beta (b) pdf, skew t (JF)

Note: Results of the estimated parametric density functions f̂B and f̂JF are shown for US consumer price inflation
inflation forecasts for the next calendar year of a Consensus survey published on 14 September 2009.

B.2 Results

We estimate the vectors θ̂
(B)
it and θ̂

(JF )
it which we can then use for simulations in a

’goodness of fit’ analysis. Fig. B.1 compares the histogram of the survey data from 14

September 2009 for US consumer price inflation forecasts with the estimated distri-

bution functions. Both results look to be close approximations of the data. Fig. B.2

compares the empirical cdf, computed using the Kaplan-Meier nonparametric method,

with the theoretical cdf of the estimated parametric density functions. Besides small

differences, both models seem to represent the data reasonably well.

In order to come to a robust conclusion about model fit, we perform a Kolmogorov-

Smirnoff test (KS-test) for the equality of the empirical cdf and the two candidate

parametric density functions. We do this for each estimated model, thus for every
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Figure B.2: Empirical cdf compared with parametric models

(a) cdf

Note: Results are shown for US consumer price inflation forecasts for the next calendar year of a survey published on
14 September 2009. The empirical cdf is computed using the Kaplan-Meier nonparametric method.

period t and country i in the sample. The KS-test uses the null hypothesis that the

two underlying distribution functions are identical. Values of the KS-test above 0.05

indicate that the null cannot be rejected at the 5 percent confidence level.

Fig. B.3 shows the results of the KS-tests. Panel (a) presents test statistics across

all countries and periods, while panel (b) shows the KS-test results for the United

States as a time series. The KS-test of both parametric models is highly statistical

significant most of the time, implying the the null of identity between the empirical

cdf and the parameterized cdf cannot be rejected at conventional levels of statistical

significance. However, the skew t distribution has on average higher p-values of the

KS-test. Also, the minimum never falls below 0.1, which is the case for some results

of the generalized beta distribution. Based on these results, we tentatively prefer the

skew t over the generalized beta.

As a final step, we exploit the availability of micro data and compute various mea-

sures of skewness of the sample data. We then compare the skeweness ratio based on

the relative position of the mean with respect to lowest and highest panel responses

Sit =
(highit − µit)− (µit − lowit)

highit − lowit
.
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Figure B.3: Fit of the parametric models

(a) KS-test result (b) KS-test results over time

Note: The Figure shows the p-value of the Kolmogorov-Smirnoff test (KS-test) for a sample of US point forecast data
for inflation in the calendar year ahead, compared with the two parametric distributions estimated. The KS-test was
evaluated under the null hypothesis that the two compared distributions are identical. Values above 0.05 indicate that
the null cannot be rejected at the 5 percent confidence level. We do not report the KS-test statistic directly, since the
critical values vary for different sample sizes.

We further compute a percentile-based measure of skweness known as Kelly’s skewness

SKelly
′s

it =
(P (90)it − P (50)it)− (P (50)it − P (10)it)

P (90)it − P (10)it
,

and Pearson’s first and second skewness coefficient

SPearson1
it =

µit −modeit
σit

,

SPearson2
it =

3(µit −medianit)
σit

.

Tab. B.1 shows summary statistics of the measures of sample skewness, specifically

the minima and maxima of the skewness ratio and Kelly’s skewness. Tab. B.1 also

provides the corrleation of the skewness ratio based on mean, lowest and highest sample

observations with the alternative measures of skweness. We take this as encouraging

piece of evidence that the distribution functions estimated via a simulated method of

moments approach in step 2 can be well informed by the less conventional skewness

ratio.
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Table B.1: Skewness in panelists’ point forecasts

median [P(10)/P(90)] N

A. Levels, cross-country comparison
Sit 0.034 [-0.016/0.057]) 24
min(Sit) -0.460 [-0.565/-0.381]) 24
max(Sit) 0.591 [0.482/0.682]) 24

min(SKelly
′s

it ) -0.736 [-1.000/-0.594]) 24

max(SKelly
′s

it ) 0.714 [0.612/1.000]) 24

B. Correlations, cross-country comparison
corr(Sit,S

unbiased
it ) 0.951 [0.933/0.962]) 23

corr(Sit,S
Kelly′s
it ) 0.527 [0.345/0.745]) 23

corr(Sit,S
Pearson2
it ) 0.531 [0.463/0.636]) 23

corr(Sit,S
Pearson1
it ) 0.353 [0.204/0.441]) 23

Notes: Skewness in panelists’ point forecasts across countries compared to
the skewness ratio Sit = [(highit−µit)−(µit−lowit)]/(highit−lowit). Due to
the lack of a standard measure of skewness, we compute a series of alternative
measures and report the coefficient of contemporaneous correlation with the
skewness ratio. Median and 10th and 90th percentiles computed from cross-
section of countries.
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C Simulated method of moments

This section in the Appendix describes the simulated method of moments (SMM)

approach in more detail. In particular, it describes the data used for the location

constraint used in the SMM-estimator. Further, we test how well the cross-sectional

shape can be reproduced with only limited data.

C.1 Location constraint

In order to inform the estimation procedure under SMM, we propose a location con-

straint. The location refers to the percentile of the respective lowest and highest

panel response in the estimated skew t distribution function. Equipped with the re-

sults of the ML-estimation in step 1 in the form of a sequence of parameter vectors

θ
(JF )
it = (µit, σit, ait, bit), we can compute the percentiles of the lowest and highest ob-

servation, which we denote by P low
i (F̂ ∗JF ) and P high

i (F̂ ∗JF ). To gain clarity, an asterisk

denotes a distribution function estimated with the full cross-section as observations.

Figure C.1: Location of reported lowest/highest survey answer in estimated distribu-
tions

(a) Percentiles of lowi,t given F̂ (b) Percentiles of highi,t given F̂

Note: Distributions of percentiles computed from survey data for estimated density functions F̂B and F̂JF . Evaluated
are the lowest survey answers (lowi,t) and higherst survey answers, respectively, across all countries i and periods t.
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We estimate kernel density to the vector P low
i (F̂ ∗JF ),

f̂Plow(x) =
1

Nω

N∑
i=1

K

(
x− xi
ω

)
,

where N is the number of observations, xi are the percentiles in the vector P low
i (F̂ ∗JF ),

ω the bandwidth and K(·) is the kernel smoothing function, which we choose to be a

normal. Fig. C.1 plots the resulting kernel density function on top of the histogram.

This kernel density is used as location constraint in the SMM estimation as described

in the main text.

Fig. C.1 panel (a) shows the histograms of percentiles P low
i (F̂ ∗JF ) and P low

i (F̂ ∗B),

respectively. The mode of the distribution P low
i (F̂ ∗B) is almost at zero, a result from

the bounded support of the generalized beta distribution function. Thus, in many

cases the ML-estimation assigns a parameterization l = lowit. The result contrasts

a lot with the skew t distribution, defined on an unlimited support and exhibiting a

well-defined mode. Fig. C.1 panel (b) shows the histograms of percentiles P high
i (F̂ ∗JF )

and P high
i (F̂ ∗B). We make the same observation with respect to the location of the

mode as for the location of the lowest sample responses in parametric distribution

functions F ∗B(·) and F ∗JF (·).

Table C.1: Location of lowest/highest observation in estimated density functions

data shape mean median mode sd [P(5)/P(95)] N

P low
i

F̂JF 4.22 3.20 2.26 4.487 [1.17/8.97] 6402

F̂B 4.34 3.21 0.21 4.074 [0.22/12.32] 6402

Phigh
i

F̂JF 95.91 96.95 97.76 5.171 [91.50/98.97] 6402

F̂B 96.29 97.38 99.99 3.665 [89.04/99.88] 6402

Note: Summary statistics P low
i and Phigh

i conditional on an estimated para-

metric distribution function F̂ ∗
JF , F̂ ∗

B . Data covering all countries i in the
sample and all available periods t for monthly next-year forecasts of CPI
inflation from Consensus.

Tab. C.1 shows summary statistics of the location parameters P low
i (F̂ ∗JF ), P low

i (F̂ ∗B),

P high
i (F̂ ∗JF ) and P high

i (F̂ ∗B). We find that the mode of the distribution of percentiles in

case of the generalized beta is below the 5th percentile and above the 95th percentile.

In fact, this amounts to setting many times parameters that govern the support of the

generalized beta distribution equal to the respective lowest and highest observation

in the sample. This is not very desirable from the perspective that the sample data

is considered as a realization from a random draw under an unknown distribution,
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since this gives zero probability mass to observations of inflation point forecasts below

lowit or above highit. We take this as a further argument to proceed with the skew t

distribution.
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C.2 Shape reproduction with limited data on long-term fore-

casts

We estimate skew extended t distributions using limited information on the ’next

calendar year’ data in SMM estimation and compare it with the results obtained via

ML estimation on the full micro data. Fig. C.2(a) shows the result US data on October

2009 as an example. It illustrates that the shape gets reasonably well reproduced when

only the mean, standard deviation and the pair of lowest and highest observations are

available. To gain a broader perspective, we perform the KS-test for estimated density

function under ML and using the full sample F̂ ∗JF and for the case of SMM estimation

with limited data F̂JF . Fig. C.2(b) shows that while density functions estimated

via ML perform better, also KS-tests for density functions estimated with SMM and

limited data most of the time cannot reject the hypothesis that the sample data is

drawn from the corresponding estimated distribution function. In fact, while the ML

estimation has 1.24 percent of p-values below 0.05, this is the case for 2.11 percent of

estimated densities under SMM estimation.

Figure C.2: Comparing two estimation approaches

(a) Shape with two estimation approaches (b) p-Values of KS tests

Note: Figure compares two estimation approaches. First, ML estimation with the full sample data. Second, SMM
with limited data, i.e. the sample mean, standard deviation, the lowest and highest sample observation. Panel (a)
shows one example, the fit for US data in October 2009. Panel (b) shows the p-Value of the KS-test evaluated for all
estimated distributions in the sample of 24 countries.

Fig. C.3 shows four sample moments from US data and compares them with mo-

ments computed from the estimated parametric skew extended t distribution functions
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under the two estimation approaches. The fit of parametric density functions regarding

the mean is very good for both estimation methods (panel a). Regarding the cross-

panelists’ standard deviation, the SMM estimation has a better fit than ML estimation

(panel b). The skewness ration is also remarkably well matched (panel c). However,

there are some deviations with respect to the mode of survey respondents, which is

due to the fact that we fit continuous density functions, while survey responses can

be grouped around some reference values due to rounding practices in the reporting

of point forecasts (panel d).

Figure C.3: Moments of parametric distributions and US sample data on next-year
inflation forecasts

(a) mean (b) standard deviation

(c) skewness Ratio (d) mode

Note: Figure compares moments computed from the survey data to moments from parametric density functions
obtained via two estimation approaches. First, ML estimation with the full sample data of US next-year inflation
forecasts. Second, SMM with limited data (i.e. the sample mean, standard deviation, the lowest and highest sample
observation).
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C.3 Nonparametric analysis of anchoring measures

We compute non parametric anchoring measures from the panel respondents of ’next

calendar year’ forecasts as a simple fraction of responses falling within a +/ − 0.1

percentage point interval around the point target or midpoint of a target range. In

analogy, we compute a non parametric measure of risk to the inflation outlook due to

low inflation (DAL) and high inflation (DAH).

Tab. C.2 shows the results of non parametric anchoring measures and compares them

directly with anchoring measures for the ’next calendar year’ fixed-event horizon from

estimated continuous density functions under ML and SMM estimation, respectively.

The non parametric anchoring measure is on average slightly higher than the anchoring

measure derived from the continuous density functions. Due to a smoothing of the

distribution in the continuous case, the tails are emphasized by construction. While

the mean difference is slightly higher for functions estimated using SMM estimation

compared to ML estimation, the mean difference is overall of very similar magnitude,

thus not driven by the estimation approach. The level of correlation between the

different anchoring measures ranges from 0.74 to 1.00 and is overall very high. We

conclude from this comparison that SMM estimation is reproducing the shape of cross-

sectional survey responses well.
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Table C.2: Comparing anchoring measures from non parametric share and parametric
distributions

cross-country... average p10 p90 N
probT

average share (nonparametric) 17.07 3.02 28.17 24
mean diff (ML-share) -3.57 -6.77 -0.91 24
mean diff (SMM-share) -4.97 -11.01 -0.80 24
corr(share, ML) 0.90 0.83 0.96 24
corr(share, SMM) 0.86 0.74 0.92 24

DAL
average share (nonparametric) 31.97 3.45 72.65 24
mean diff (ML-share) 1.60 -0.02 3.21 24
mean diff (SMM-share) 2.43 0.09 4.45 24
corr(share, ML) 0.97 0.95 1.00 24
corr(share, SMM) 0.96 0.85 0.99 24

DAH
average share (nonparametric) 50.96 9.99 93.10 24
mean diff (ML-share) 1.97 0.03 4.32 24
mean diff (SMM-share) 2.54 -0.29 6.23 24
corr(share, ML) 0.98 0.94 1.00 24
corr(share, SMM) 0.97 0.92 0.99 24

Note: Table showing the mean of anchoring measure computed as a share
of all responses in the survey panel (’average share’, i.e. non-parametric).
For a sample of 24 countries, the cross-country average, 10th and 90th per-
centiles are reported. ’mean diff’ measures the average difference of the
non-parametric share and the anchoring measure derived from the estimated
parametric distribution F̂ ∗

JF , with maximum-likelihood methods (ML) and
using a simulated method of moments approach based on limited data,
i.e. the mean, standard deviation, highest and lowest sample observation
(SMM). ’’corr’ exhibits the contemporaneous correlation coefficient between
anchoring measures.
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D Additional results

Table D.1: Effect of numerically defined target on anchoring (probT )

A. Numerical targe definition

(1) (2) (3) (4) (5)
probT probT probT probT probT
(h=2) (h=3) (h=4) (h=5) (h=6)

dnumTarget 0.0161 -0.00110 -0.0316∗ -0.0408∗∗∗ -0.0527∗∗∗

(0.0274) (0.0235) (0.0162) (0.0123) (0.0155)

sd infl. (24m) -0.0230∗∗∗ -0.0183 -0.0344∗∗ -0.0507∗∗∗ -0.0315∗∗

(0.00849) (0.0147) (0.0138) (0.0122) (0.0149)

Regulatory quality 0.0269 0.0543 -0.00413 -0.0865 -0.0646
(0.0398) (0.0503) (0.0588) (0.0640) (0.0709)

Constant 0.110∗∗ 0.153∗∗∗ 0.304∗∗∗ 0.391∗∗∗ 0.375∗∗∗

(0.0450) (0.0537) (0.0655) (0.0623) (0.0723)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 897 897 897 897 895
N.Countries 29 29 29 29 29
adj. R-squared 0.08 0.04 0.05 0.06 0.05

B. Role of inflation target types

probT probT probT probT probT
(h=2) (h=3) (h=4) (h=5) (h=6)

dnumRange -0.0523 -0.0830∗∗ -0.108∗ -0.0806∗ -0.0653
(0.0496) (0.0413) (0.0540) (0.0462) (0.0506)

dnumPoint 0.0687∗∗∗ 0.0869∗∗∗ 0.0775∗∗∗ 0.0859∗∗∗ 0.0753∗∗∗

(0.0223) (0.0204) (0.0266) (0.0267) (0.0201)

sd infl. (24m) -0.0230∗∗∗ -0.0185 -0.0351∗∗ -0.0514∗∗∗ -0.0324∗∗

(0.00850) (0.0145) (0.0134) (0.0116) (0.0153)

Regulatory quality 0.0323 0.0620 0.00399 -0.0782 -0.0572
(0.0387) (0.0502) (0.0604) (0.0658) (0.0700)

Constant 0.0998∗∗ 0.127∗∗ 0.264∗∗∗ 0.331∗∗∗ 0.307∗∗∗

(0.0459) (0.0549) (0.0654) (0.0654) (0.0688)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 897 897 897 897 895
N.Countries 29 29 29 29 29
adj. R-squared 0.10 0.07 0.07 0.08 0.06
p-val(F-test) 0.004 0.000 0.000 0.000 0.001

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Standard
errors based on Driscoll and Kraay (1998) in parentheses. F-test for H0 : dnumRange =
dnumPoint. All equations are estimated separately for each forecast horizon from h = 2
to h = 6 years based on a fixed-horizon approximation.
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Table D.2: Effect of target types on anchoring (probT )

(1) (2) (3) (4) (5)
(h=2) (h=3) (h=4) (h=5) (h=6)

dhybrid 0.110∗∗∗ 0.162∗∗∗ 0.168∗∗∗ 0.176∗∗∗ 0.153∗∗∗

(0.0201) (0.0234) (0.0258) (0.0313) (0.0276)

dpoint 0.0828∗∗∗ 0.111∗∗∗ 0.153∗∗∗ 0.162∗∗∗ 0.221∗∗∗

(0.0300) (0.0274) (0.0400) (0.0372) (0.0406)

sd infl. (24m) -0.0153∗ -0.00993 -0.0266∗ -0.0438∗∗∗ -0.0294∗

(0.00897) (0.0158) (0.0152) (0.0132) (0.0158)

Regulatory quality 0.0534 0.0824 -0.0134 -0.111 -0.110
(0.0572) (0.0622) (0.0685) (0.0705) (0.0832)

Constant 0.0251 0.0166 0.162∗∗ 0.229∗∗∗ 0.243∗∗∗

(0.0571) (0.0618) (0.0693) (0.0703) (0.0811)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 827 827 827 827 825
N.Countries 28 28 28 28 28
adj. R-squared 0.12 0.08 0.08 0.10 0.08
p-val(F-test) 0.283 0.029 0.710 0.687 0.044

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Standard errors
based on Driscoll and Kraay (1998) in parentheses. F-test for H0 : dhybrid = dpoint.
Results for model (4.2) (A. Numerical target definition) and model (4.3) (B. Role of
inflation target types). The dependent variable is the probabilistic measure of anchoring
(probT ). All equations are estimated separately for each forecast horizon from h = 2 to
h = 6 years based on a fixed-horizon approximation.
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Table D.3: Effect of target types on disanchoring measures (DAL, DAH)

A. Disanchoring from low inflation (DAL)

(1) (2) (3) (4) (5)
DAL DAL DAL DAL DAL
(h=2) (h=3) (h=4) (h=5) (h=6)

dhybrid 0.262∗∗∗ 0.201∗∗ 0.175∗∗ 0.184∗∗ 0.180∗∗

(0.0899) (0.0923) (0.0861) (0.0768) (0.0680)

dpoint 0.228∗ 0.0333 -0.0886 -0.0657 -0.0684
(0.123) (0.133) (0.106) (0.0971) (0.0897)

sd infl. (24m) -0.0162 -0.0320∗∗ -0.0127 -0.00606 -0.0189
(0.0117) (0.0138) (0.0155) (0.0171) (0.0220)

Regulatory quality -0.113 0.134 0.352∗∗∗ 0.425∗∗∗ 0.340∗∗∗

(0.0687) (0.0869) (0.114) (0.105) (0.114)

Constant 0.293∗∗∗ 0.0988 -0.0737 -0.122 -0.0294
(0.0581) (0.0711) (0.109) (0.103) (0.108)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 827 827 827 827 825
N.Countries 28 28 28 28 28
adj. R-squared 0.22 0.16 0.18 0.17 0.14
p-val(F-test) 0.616 0.011 0.000 0.000 0.000

B. Disanchoring from high inflation (DAH)

(1) (2) (3) (4) (5)
(h=2) (h=3) (h=4) (h=5) (h=6)

dhybrid -0.372∗∗∗ -0.363∗∗∗ -0.344∗∗∗ -0.360∗∗∗ -0.333∗∗∗

(0.0806) (0.0947) (0.0899) (0.0807) (0.0791)

dpoint -0.311∗∗∗ -0.144 -0.0641 -0.0959 -0.153
(0.103) (0.130) (0.118) (0.111) (0.109)

sd infl. (24m) 0.0316∗∗ 0.0419∗∗∗ 0.0393∗∗ 0.0498∗∗ 0.0483∗∗

(0.0145) (0.0128) (0.0164) (0.0203) (0.0196)

Regulatory quality 0.0598 -0.216∗∗ -0.338∗∗∗ -0.314∗∗∗ -0.229∗∗

(0.0656) (0.0824) (0.121) (0.101) (0.0916)

Constant 0.682∗∗∗ 0.885∗∗∗ 0.912∗∗∗ 0.892∗∗∗ 0.787∗∗∗

(0.0739) (0.0849) (0.114) (0.0996) (0.0902)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 827 827 827 827 825
N.Countries 28 28 28 28 28
adj. R-squared 0.30 0.27 0.26 0.25 0.23
p-val(F-test) 0.309 0.002 0.000 0.000 0.002

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Standard errors
based on Driscoll and Kraay (1998) in parentheses. Results for model (4.4), where the
dependent variable is the probabilistic measure of anchoring (probT ). All equations are
estimated separately for each forecast horizon from h = 2 to h = 6 years based on a
fixed-horizon approximation.

Table D.4: Summary statistics of credibility losses

Full sample AEs EMEs
mean sd min max mean sd min max mean sd min max

CL(−) 0.92 1.39 0.00 6.11 0.89 1.05 0.00 5.11 0.94 1.64 0.00 6.11

CL(+) 1.62 4.73 0.00 69.61 0.27 0.51 0.00 2.54 2.94 6.34 0.00 69.61
N 4408 2172 2236

Notes. Summary statistics of the credibility loss indicator computed from monthly data over the sample
period 2005m4-2020m4 for 12 advanced economies (AEs) and 17 emerging market economies (EMEs).
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Table D.5: Credibility loss and target types

(1) (2) (3) (4) (5) (6)
probT(4) probT(6) DAL(4) DAL(6) DAH(4) DAH(6)

dhybrid 0.178∗∗∗ 0.168∗∗∗ 0.128∗∗ 0.130∗∗∗ -0.306∗∗∗ -0.298∗∗∗

(0.0266) (0.0336) (0.0594) (0.0443) (0.0740) (0.0630)

dpoint 0.167∗∗∗ 0.220∗∗∗ -0.0241 0.0239 -0.143 -0.244∗∗

(0.0476) (0.0389) (0.0885) (0.0772) (0.101) (0.0918)

CL(+) 0.0780∗ 0.0362 -0.226∗∗∗ -0.158∗∗ 0.148∗ 0.121∗

(0.0415) (0.0443) (0.0793) (0.0774) (0.0753) (0.0635)

CL(−) -0.0382∗ -0.0670∗∗ 0.163∗∗∗ 0.156∗∗∗ -0.125∗∗∗ -0.0886∗∗∗

(0.0226) (0.0273) (0.0334) (0.0345) (0.0186) (0.0226)

CL(+) × dhybrid -0.0844∗∗ -0.0382 0.213∗∗ 0.125 -0.128∗ -0.0872
(0.0376) (0.0410) (0.0814) (0.0776) (0.0759) (0.0608)

CL(−) × dhybrid 0.0106 0.0407 -0.0853∗∗ -0.0666∗ 0.0747∗∗∗ 0.0259
(0.0245) (0.0298) (0.0374) (0.0369) (0.0256) (0.0264)

CL(+) × dpoint -0.0851 -0.00204 0.292∗∗∗ 0.116 -0.207∗∗ -0.114
(0.0710) (0.0722) (0.0964) (0.0890) (0.0866) (0.0835)

CL(−) × dpoint -0.00783 0.0534 -0.211∗∗∗ -0.248∗∗∗ 0.219∗∗∗ 0.195∗∗∗

(0.0496) (0.0596) (0.0478) (0.0534) (0.0345) (0.0421)

sd infl. (24m) -0.0281 -0.0310 0.0145 0.0206 0.0136 0.0104
(0.0236) (0.0240) (0.0235) (0.0223) (0.0217) (0.0210)

Regulatory quality -0.0533 -0.130 0.265∗∗∗ 0.280∗∗ -0.211 -0.149
(0.0814) (0.0971) (0.0986) (0.124) (0.132) (0.102)

Constant 0.195∗∗ 0.252∗∗∗ 0.000799 0.00862 0.804∗∗∗ 0.739∗∗∗

(0.0855) (0.0935) (0.0923) (0.108) (0.130) (0.0989)

country FE Yes Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes Yes
N.Obs 827 825 827 825 827 825
N.Countries 28 28 28 28 28 28
adj. R-squared 0.11 0.10 0.34 0.32 0.34 0.31

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Standard errors
based on Driscoll and Kraay (1998) in parentheses. Results for model (4.6), dependent
variables are the probabilistic measure of anchoring (probT ), downside risk to inflation
(DAL), and upside risk to inflation (DAH). All equations are estimated separately for
each forecast horizons. For brevity, results are only shown for horizons of 4 and 6 years.

Table D.6: Credibility loss and target types

(1) (2) (3) (4) (5)
DAL(2) DAL(3) DAL(4) DAL(5) DAL(6)

CL(−) × dhybrid -0.118∗∗∗ -0.126∗∗∗ -0.0853∗∗ -0.0716∗ -0.0666∗

(0.0396) (0.0379) (0.0374) (0.0366) (0.0369)

CL(−) × dpoint -0.262∗∗∗ -0.180∗∗∗ -0.211∗∗∗ -0.273∗∗∗ -0.248∗∗∗

(0.0497) (0.0504) (0.0478) (0.0504) (0.0534)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 827 827 827 827 825
N.Countries 28 28 28 28 28
adj. R-squared 0.29 0.26 0.34 0.32 0.32

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Standard
errors based on Driscoll and Kraay (1998) in parentheses.
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Table D.7: Credibility loss and target types

(1) (2) (3) (4) (5)
DAH(2) DAH(3) DAH(4) DAH(5) DAH(6)

CL(+) × dhybrid -0.195∗∗ -0.168∗∗ -0.128∗ -0.0929 -0.0872
(0.0769) (0.0789) (0.0759) (0.0670) (0.0608)

CL(+) × dpoint 0.0686 -0.134 -0.207∗∗ -0.153∗ -0.114
(0.0880) (0.0821) (0.0866) (0.0806) (0.0835)

country FE Yes Yes Yes Yes Yes
year dummies Yes Yes Yes Yes Yes
N.Obs 827 827 827 827 825
N.Countries 28 28 28 28 28
adj. R-squared 0.35 0.32 0.34 0.34 0.31

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Standard
errors based on Driscoll and Kraay (1998) in parentheses.

Table D.8: Robustness (dhybrid, dpoint)

(1) (2) (3) (4) (5)
(h=2) (h=3) (h=4) (h=5) (h=6)

Baseline
dhybrid 0.110∗∗∗ 0.162∗∗∗ 0.168∗∗∗ 0.176∗∗∗ 0.153∗∗∗

(0.0201) (0.0234) (0.0258) (0.0313) (0.0276)

dpoint 0.0828∗∗∗ 0.111∗∗∗ 0.153∗∗∗ 0.162∗∗∗ 0.221∗∗∗

(0.0300) (0.0274) (0.0400) (0.0372) (0.0406)

Absolute distance, mean to target
dhybrid -0.512∗∗∗ -0.492∗∗∗ -0.518∗∗∗ -0.522∗∗∗ -0.479∗∗∗

(0.156) (0.133) (0.108) (0.0975) (0.0763)

dpoint -0.404∗∗ -0.421∗∗∗ -0.459∗∗∗ -0.493∗∗∗ -0.541∗∗∗

(0.175) (0.131) (0.0907) (0.0872) (0.0777)

AEs
dhybrid 0.171∗∗∗ 0.254∗∗∗ 0.269∗∗∗ 0.289∗∗∗ 0.282∗∗∗

(0.0271) (0.0440) (0.0457) (0.0559) (0.0612)

dpoint 0.142∗∗∗ 0.162∗∗∗ 0.221∗∗∗ 0.228∗∗∗ 0.305∗∗∗

(0.0360) (0.0546) (0.0692) (0.0737) (0.0843)

w/o Japan, Turkey
dhybrid 0.108∗∗∗ 0.157∗∗∗ 0.165∗∗∗ 0.173∗∗∗ 0.148∗∗∗

(0.0205) (0.0236) (0.0262) (0.0312) (0.0273)

dpoint 0.0794∗∗ 0.109∗∗∗ 0.156∗∗∗ 0.163∗∗∗ 0.222∗∗∗

(0.0305) (0.0270) (0.0410) (0.0370) (0.0415)

No controls
dhybrid 0.106∗∗∗ 0.154∗∗∗ 0.168∗∗∗ 0.182∗∗∗ 0.153∗∗∗

(0.0194) (0.0229) (0.0250) (0.0312) (0.0294)

dpoint 0.0843∗∗∗ 0.118∗∗∗ 0.137∗∗∗ 0.137∗∗∗ 0.194∗∗∗

(0.0265) (0.0270) (0.0417) (0.0382) (0.0392)

No year dummies
dhybrid 0.122∗∗∗ 0.163∗∗∗ 0.159∗∗∗ 0.179∗∗∗ 0.177∗∗∗

(0.0199) (0.0218) (0.0193) (0.0215) (0.0282)

dpoint 0.0945∗∗∗ 0.114∗∗∗ 0.150∗∗∗ 0.169∗∗∗ 0.236∗∗∗

(0.0273) (0.0266) (0.0387) (0.0331) (0.0384)

Notes. ***/**/*/ denote statistical significance at the 1%/5%/10% level. Standard
errors based on Driscoll and Kraay (1998) reported in parentheses. All equations
are estimated separately for each forecast horizon of 4 and 6 years based on a
fixed-horizon approximation.
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