Investment, Financial Frictions and the Dynamic Effects of Monetary Policy

James Cloyne
UC, Davis

Clodo Ferreira
Bank of Spain

Maren Froemel
London Business School & BoE

Paolo Surico

ESCB Research Cluster 2
Paris, November 7th 2018

The views expressed are those of the authors and do not necessarily reflect the views of the Bank of Spain, the Euro-system, Bank of England, MPC, FPC or PRA.
Monetary transmission and financial frictions

- Which type of firms are more sensitive to interest rate changes?
- How much do these firms contribute to the aggregate response?
- How can financial frictions be identified from balance sheet data?
- Do financial frictions dampen or amplify monetary policy shocks?
Monetary transmission and financial frictions

- Which **type of firms** are more sensitive to interest rate changes?

- How much do these firms contribute to the **aggregate response**?

- How can **financial frictions** be identified from **balance sheet** data?

- Do financial frictions **dampen** or **amplify** monetary policy shocks?
Empirical challenges and our approach

1. Assess **heterogeneity** across firms’ characteristics.
 → Look at **firm-level** capital expenditure in U.K. and U.S.
 → Explore variation by **age**, **size**, **growth**, **leverage** and **Tobin’s Q**.

2. Evaluate **balance sheet position** across groups of firms.
 → Exploit info on **dividends and bond issuance decisions**, **credit scores**, and **equity prices**.

3. Identify a series of **monetary policy shocks**.
Assess heterogeneity across firms’ characteristics.
 → Look at firm-level capital expenditure in U.K. and U.S.
 → Explore variation by age, size, growth, leverage and Tobin’s Q.

Evaluate balance sheet position across groups of firms.
 → Exploit info on dividends and bond issuance decisions, credit scores, and equity prices.

Identify a series of monetary policy shocks.
Empirical challenges and our approach

1. Assess heterogeneity across firms’ characteristics.
 → Look at firm-level capital expenditure in U.K. and U.S.
 → Explore variation by age, size, growth, leverage and Tobin’s Q.

2. Evaluate balance sheet position across groups of firms.
 → Exploit info on dividends and bond issuance decisions, credit scores, and equity prices.

3. Identify a series of monetary policy shocks.
Assess heterogeneity across firms’ characteristics.

→ Look at firm-level capital expenditure in U.K. and U.S.
→ Explore variation by age, size, growth, leverage and Tobin’s Q.

Evaluate balance sheet position across groups of firms.

→ Exploit info on dividends and bond issuance decisions, credit scores, and equity prices.

Identify a series of monetary policy shocks.

Main empirical finding I: heterogeneity

- Younger firms exhibit significantly larger adjustments in investment after an interest rate change and drive the aggregate response.

- Within these, the strongest adjustment is recorded among younger firms paying no dividends.

- Peak effect occurs between two and three years after the shock.

- Results are robust to controlling for other, more traditional, firms’ characteristics.
Main empirical finding II: mechanism

- Younger firms’ borrowing is more asset-based (than earning-based)...

- ...and their investment relies more on external funds (debt)

After a contractionary monetary policy shock:

- interest payments and net worth respond homogeneously for all age groups

- borrowing, though, drops by a larger and significant amount for younger firms, especially those paying no dividends;

- sales (demand) responses are less pronounced and more homogenous across age/dividends groups.

Consistent with financial frictions playing a quantitatively important role to amplify business cycle fluctuations through collateral values.
Main empirical finding II: mechanism

- Younger firms’ borrowing is more asset-based (than earning-based)...
- ...and their investment relies more on external funds (debt)

After a contractionary monetary policy shock:
- interest payments and net worth respond homogeneously for all age groups
- borrowing, though, drops by a larger and significant amount for younger firms, especially those paying no dividends;
- sales (demand) responses are less pronounced and more homogenous across age/dividends groups.

Consistent with financial frictions playing a quantitatively important role to amplify business cycle fluctuations through collateral values.
Main empirical finding II: mechanism

- Younger firms’ borrowing is more asset-based (than earning-based)...
- ...and their investment relies more on external funds (debt)

After a contractionary monetary policy shock:
- interest payments and net worth respond homogeneously for all age groups
- borrowing, though, drops by a larger and significant amount for younger firms, especially those paying no dividends;
- sales (demand) responses are less pronounced and more homogenous across age/dividends groups.

Consistent with financial frictions playing a quantitatively important role to amplify business cycle fluctuations through collateral values.
Outline

1. Data & approach
2. Heterogeneity
3. Financial frictions
4. Other transmission mechanisms
5. Concluding remarks

Real variables: capital expenditure, age (years since incorporation or IPO), size (by asset value), growth (by assets), net sales.

Financial variables: leverage (debt over assets); Tobin’s Q; equity; cash flows; dividends paid; share prices; interest payments, bond issuance.

U.K.: 2,435 unique listed firms and around 27,000 (firms x years) obs.
U.S.: 11,577 unique listed firms and 623,000 (firms x quarters) obs.
Investment: National Statistics vs Micro data

Levels

Growth rates

Correlation .58 (pvalue = 0)
Monetary policy shock series

- **High frequency surprises** on short rate futures in a 30 minutes window around policy announcements, available since 2001 for the U.K. (Gerko-Rey) and since 1991 for the U.S. (Gertler-Karadi).

- Monthly macro **proxy-SVAR** over 1987-2015 using the high frequency surprises as proxies to extract a shock series for the full sample (see Mertens and Ravn, 2014; Ramey 2016).

- Firms are matched with monthly interest rate surprises based on their respective filing dates.
Empirical specification: panel IV-Local Projections

$$X_{j,t+h} - X_{j,t-1} = \alpha^h_j + \sum_{g=1}^{G} \alpha^h_g \times Dg^h_{j,t} + \sum_{g=1}^{G} \beta^h_g \times Dg^h_{j,t} \times R_t + \epsilon_{j,t+h}$$

- **Baseline** $X_{j,t+h}$: capital expenditure over net PPE at horizon h;
- Dg: dummy for groups of age, size, leverage, paying dividends in previous year;
- R_t: interest rate in quarter t (slightly more convoluted for the U.K. annual data);
- Instrument: policy shocks in the accounting period t, extracted from proxy-SVAR.
- β^h_g: impulse response for group g at forecast horizon h.

- **Additional** firm-level $X_{j,t+h}$: borrowing, share prices, sales, interest payments;
 Additional aggregate X_{t+h}: industrial production, stock price index, credit spread.

- Standard errors clustered by firms and time.
The average effect: capital expenditure over net PPE

United Kingdom

United States

Consistent with the ▶ MACRO EVIDENCE using data from national statistics.

Same message when reporting at the ▶ ANNUAL FREQUENCY
Outline

1. Data & approach
2. Heterogeneity
3. Financial frictions
4. Other transmission mechanisms
5. Concluding remarks
Descriptive Statistics
Firms’ size, growth and revenues as function of **AGE**

Size

United Kingdom

United States

Asset growth

EBITDA

Based on regressions of the variable of interest on age, squared age, sectorsXtime fixed effects (and size).
Firms’ financial characteristics as function of **AGE**

Credit scores

Paying dividends

Leverage

Based on regressions of the variable of interest on age, squared age, sectorsXtime fixed effects (and size).
Summary: younger firms tend on average to

- **be smaller** in size
- **grow faster** (in assets)
- **have less internal funds**
- **have lower**
 - credit scores (and probability of issuing bonds)
 - probability of paying dividends
- **have lower leverage**
- **have higher** (average) **Tobin’s Q**
IMPULSE RESPONSE ANALYSIS
Dynamic effects of monetary policy on investment

United Kingdom

Younger

Middle-aged

Older

United States

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
Investment response by AGE & DIVIDENDS: U.K.

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
Heterogeneity by age and dividends is ROBUST to...

1. **Size**
2. **Firm’s growth**
3. **Leverage**
4. **Tobin’s Q**
UNCONDITIONAL CORRELATIONS
Borrowing: asset-based vs. earning-based

\[\Delta b_{i,t}^{LT} = \sum_{g=1}^{G} \beta_{1,g} x D g_{i,t} \text{COLLATERAL}_{i,t-1} + \sum_{g=1}^{G} \beta_{2,g} x D g_{i,t} \text{EBITDA}_{i,t-1} + X'_{i,t} \gamma + \epsilon_{i,t} \]

<table>
<thead>
<tr>
<th>COLLATERAL(_{t-1})</th>
<th>U.K.</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young / nodiv</td>
<td>0.0245***</td>
<td>0.0628***</td>
</tr>
<tr>
<td>Old / div</td>
<td>0.0117</td>
<td>0.0376**</td>
</tr>
<tr>
<td></td>
<td>(0.0092)</td>
<td>(0.0131)</td>
</tr>
<tr>
<td>EBITDA(_{t-1})</td>
<td>-0.0126</td>
<td>0.0068</td>
</tr>
<tr>
<td></td>
<td>(0.0114)</td>
<td>(0.0160)</td>
</tr>
<tr>
<td></td>
<td>0.0694***</td>
<td>0.0484**</td>
</tr>
<tr>
<td></td>
<td>(0.0191)</td>
<td>(0.0183)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.4128</td>
<td>0.4128</td>
</tr>
<tr>
<td>(N)</td>
<td>14 921</td>
<td>16 149</td>
</tr>
</tbody>
</table>

Dependent variable: \(\Delta\) long-term debt

Note: the regression includes timeXsector and firm-level fixed effects. Standard errors are clustered by time and firm.
Borrowing: asset-based vs. earning-based

\[\Delta b_{i,t}^{LT} = \sum_{g=1}^{G} \beta_{1,g} xDg_{i,t} \text{COLLATERAL}_{i,t-1} + \sum_{g=1}^{G} \beta_{2,g} xDg_{i,t} \text{EBITDA}_{i,t-1} + X'_{i,t} \gamma + \epsilon_{i,t} \]

<table>
<thead>
<tr>
<th></th>
<th>U.K.</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Young / nodiv</td>
<td>Old / div</td>
</tr>
<tr>
<td>COLLATERAL_{t-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0245***</td>
<td>0.0117</td>
</tr>
<tr>
<td></td>
<td>(0.0092)</td>
<td>(0.0093)</td>
</tr>
<tr>
<td>EBITDA_{t-1}</td>
<td>-0.0126</td>
<td>0.0694***</td>
</tr>
<tr>
<td></td>
<td>(0.0114)</td>
<td>(0.0191)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.4128</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>14 921</td>
<td></td>
</tr>
</tbody>
</table>

Dependent variable: \(\Delta \) long-term debt

Note: the regression includes timeXsector and firm-level fixed effects. Standard errors are clustered by time and firm.
Borrowing: asset-based vs. earning-based

\[\Delta b_{i,t}^{LT} = \sum_{g=1}^{G} \beta_{1,g} x D g_{i,t} \text{COLLATERAL}_{i,t-1} + \sum_{g=1}^{G} \beta_{2,g} x D g_{i,t} \text{EBITDA}_{i,t-1} + X'_{i,t} \gamma + \epsilon_{i,t} \]

<table>
<thead>
<tr>
<th>COLLATERAL_t_1</th>
<th>U.K.</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young / nodiv</td>
<td>Old / div</td>
<td>Young / nodiv</td>
</tr>
<tr>
<td>0.0245***</td>
<td>0.0117</td>
<td>0.0628***</td>
</tr>
<tr>
<td>(0.0092)</td>
<td>(0.0093)</td>
<td>(0.0131)</td>
</tr>
<tr>
<td>-0.0126</td>
<td>0.0694***</td>
<td>0.0068</td>
</tr>
<tr>
<td>(0.0114)</td>
<td>(0.0191)</td>
<td>(0.0160)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EBITDA_t_1</th>
<th>0.4128</th>
<th>0.4128</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 921</td>
<td>16 149</td>
<td></td>
</tr>
</tbody>
</table>

Dependent variable: \(\Delta \) long-term debt

Note: the regression includes timeXsector and firm-level fixed effects. Standard errors are clustered by time and firm.
Financing investment: external vs. internal funds

Based on a regression of investment on net debt and net equity issuances, cash flows, sectorXtime dummies (and firms’ controls).
CONDITIONAL CORRELATIONS
EQUITY (MKT. VALUE) responds for textbf{ALL} firms

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
More homogenous INTEREST PAYMENTS responses

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
Larger **BORROWING** response for Younger/No Div.

United Kingdom

Younger & NO dividends

Older & Paying dividends

United States

Younger & NO dividends

Older & Paying dividends

Monetary Policy shock: 25 basis point increase. **Standard errors clustering:** by firms and time. **Confidence band:** 90%.
More homogenous **SALES** responses

Younger & NO dividends

- United Kingdom
 - Percent:
 - Year 1: 0
 - Year 2: -0.25
 - Year 3: -0.5
 - Year 4: -0.25
 - Year 5: 0

- United States
 - Percent:
 - Quarters 1: 0
 - Quarters 4: -2
 - Quarters 7: -1
 - Quarters 10: 0
 - Quarters 13: 1
 - Quarters 16: 2

Older & Paying dividends

- United Kingdom
 - Percent:
 - Year 1: 0
 - Year 2: -0.25
 - Year 3: -0.5
 - Year 4: -0.25
 - Year 5: 0

- United States
 - Percent:
 - Quarters 1: 0
 - Quarters 4: -2
 - Quarters 7: -1
 - Quarters 10: 0
 - Quarters 13: 1
 - Quarters 16: 2

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
Outline

1. Data & approach
2. Heterogeneity
3. Financial frictions
4. Other transmission mechanisms
5. Concluding remarks
Our contribution: **SIX NEW FINDINGS**...

1. Younger firms respond more than any other group and **drive the aggregate response** of investment to a monetary policy shock.

2. Results are more pronounced among young firms **paying no dividends** and robust to controlling for other firms’ characteristics.

3. Younger firms’ **capex relies more on debt** (than internal funds).

4. Younger firms’ **debt is more asset-based** (than earning-based).

5. **Net worth and interest payments** move for all firms.

6. **Borrowing** move most among younger firms.

7. **Sales responses** are homogeneous.
Our contribution: **SIX NEW FINDINGS...**

1. Younger firms respond more than any other group and **drive the aggregate response** of investment to a monetary policy shock.

2. Results are more pronounced among young firms **paying no dividends** and robust to controlling for other firms’ characteristics.

3. Younger firms’ **capex relies more on debt** (than internal funds).

4. Younger firms’ **debt is more asset-based** (than earning-based).

5. Net worth and interest payments move for all firms.

6. Borrowing moves most among younger firms.

7. Sales responses are homogeneous.
Our contribution: **SIX NEW FINDINGS**...

1. **Younger firms** respond more than any other group and **drive the aggregate response** of investment to a monetary policy shock.

2. Results are more pronounced among young firms **paying no dividends** and robust to controlling for other firms’ characteristics.

3. Younger firms’ **capex relies more on debt** (than internal funds).

4. Younger firms’ **debt is more asset-based** (than earning-based).

5. **Net worth and interest payments** move for all firms.

6. **Borrowing move most** among younger firms.

7. **Sales responses** are homogeneous.
Younger firms tend to use external finance (mostly debt) to fund capital expenditure, and tend to borrow against the value of the assets used as collateral.

A contractionary monetary policy shock raises credit spreads, affecting most firms relying on external finance.

A contractionary monetary policy shock pushes down asset prices & tighten their borrowing constraint, leading to a fall in investment.

Young firms face **significant financial frictions** & **financial accelerator** plays a key role in the transmission of monetary policy to investment.
Extra Slides
The response of selected macro variables

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
The response of selected macro variables cont’d

Employment

Credit Spread

United Kingdom

United States

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
The U.S. average effect reported at annual frequency

Quarterly

Annual

[Back to average effect]
Investment responses by **SIZE** groups

Smaller

Medium

Larger

United Kingdom

United States

Monetary Policy shock: 25 basis point increase. **Standard errors clustering:** by firms and time. **Confidence band:** 90%.
'Controlling’ for (SMALLER) size

United Kingdom

NO dividends & Younger

United States

No dividends & Older

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
'Controlling’ for (FASTER) asset growth

Back to robustness summary
Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
'Controlling’ for (LOWER) leverage

United Kingdom

NO dividends & Younger

United States

No dividends & Older

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.
Investment responses by **TOBIN’S Q** groups

Monetary Policy shock: 25 basis point increase. **Standard errors clustering:** by firms and time. **Confidence band:** 90%.
’Controlling’ for (HIGHER) Tobin’s Q

Monetary Policy shock: 25 basis point increase. Standard errors clustering: by firms and time. Confidence band: 90%.

Back to robustness summary