Forward Guidance without Common Knowledge

George-Marios Angeletos1 Chen Lian2

1MIT and NBER
2MIT

November 17, 2017
Outline

1 Introduction

2 Environment

3 GE Attenuation and Horizon Effects

4 Forward Guidance Puzzle

5 Conclusion
Motivation

- How does the economy respond to news about the future?
 - e.g. news about future interest rates or government spending

- Key mechanisms:
 - forward-looking expectations (e.g., of inflation and income)
 - general-equilibrium effects (Keynesian multiplier, $\pi - y$ feedback)

- Standard macro analysis assumes **REE and complete info**

- By imposing perfect coordination, we might "overstate"
 - responsiveness of **forward-looking** expectations
 - potency of **GE effects**
 - ability of PM to influence economic outcomes
Forward Guidance Puzzle

Context: A NK Economy at the ZLB

Policy Question: forward guidance & (backloading) fiscal stimuli

Answer: mainly driven by GE effects from inflation and income
 ▶ GE quantitatively large
 ▶ GE explodes with horizon
 ▶ PE effects decreases with horizon
Main Findings

- Key step: recast IS and NKPC as Dynamic Beauty Contests

- Key insight: removing Common Knowledge \(\implies \)
 - anchors expectations of \(y \) and \(\pi \)
 - attenuates GE feedback loops (both within and across two blocks)
 - attenuation larger the longer these loops (horizon effect)

- Implications:
 - lessen forward guidance puzzle
 - offer rationale for front-loading fiscal stimuli
Related Literature

Part I: Higher-order uncertainty in macroeconomics

Part II: Forward guidance
- We maintain micro-foundations & rational expectations
- We focus on
 - a game theoretic representation of the NK model
 - forward looking pricing rules
 - coordination frictions both within consumers and firms and across them
 - horizon effects
Outline

1. Introduction
2. Environment
3. GE Attenuation and Horizon Effects
4. Forward Guidance Puzzle
5. Conclusion
Context

- Starting point: textbook NK model
- Main departure: remove CK of news about fundamentals/policy
- Key friction: uncertainty about how others will respond
 ▶ not uncertainty about the fundamentals/policy per se
Euler/IS WITH Common Knowledge

\[y_t = -E_t[r_{t+1}] + E_t[y_{t+1}] \]

- Key implication: \(y = f \) (expected path of \(r \))
 - this implication is robust to borrowing constraints
 - even though the aggregate Euler equation itself is different
Euler/IS WITHOUT Common Knowledge

\[y_t = - \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} E_t[r_{t+k}] \right\} + (1 - \beta) \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} E_t[y_{t+k}] \right\} \]

- **Dynamic beauty contest** among consumers
 - follows from PIH and \(y = c \)
 - modern version of Keynesian income multiplier

- Key implication: \(y \neq f(\text{expected path of } r) \)
 - instead, response of \(y \) to news about path of \(r \) hinges on HOB

- Why no recursive?
 - Law of iterated expectation **do not hold** for \(E_t[\cdots] \)
NKPC WITH/WITHOUT Common Knowledge

\[\pi_t = m c_t + \beta E_t [\pi_{t+1}] \]

vs

\[\pi_t = m c_t + \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^k \bar{E}_t^f [m c_{t+k}] \right\} + \frac{1-\theta}{\theta} \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^k \bar{E}_t^f [\pi_{t+k}] \right\} \]

- Dynamic beauty contest among the firms
 - follows from optimal price setting

- Key implication: \(\pi \neq f(\text{expected path of } m c) \)
 - instead, response of \(\pi \) to news about path of \(m c \) hinges on HOB
Three GE Mechanisms

- **Income multiplier:** $\bar{E}_t [y_{t+k}] \Rightarrow y_t$

- **Pricing complementarity:** $\bar{E}_t^f [\pi_{t+k}] \Rightarrow \pi_t$

- **Inflationary spiral:** interaction the two groups
 - $\bar{E}_t [\pi_{t+k}] \Rightarrow \bar{E}_t [r_{t+k}] \Rightarrow y_t$
 - $\bar{E}_t^f [y_{t+k}] \Rightarrow \bar{E}_t^f [mc_{t+k}] \Rightarrow \pi_t$

- **Standard practice:** impose CK = maximize all GE effects

- **Our paper:** relax CK = GE become HOB = attenuate all GE effects
Outline

1. Introduction
2. Environment
3. GE Attenuation and Horizon Effects
4. Forward Guidance Puzzle
5. Conclusion
Dynamic Beauty Contests

- To develop intuition, focus on demand block first
 - treat real interest rate path exogenous
 - e.g. rigid price and CB controls nominal interest rate path

\[
y_t = -r_t - \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} E_t [r_{t+k}] \right\} + (1 - \beta) \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} E_t [y_{t+k}] \right\}
\]

- Question: How does \(y_0 \) respond to news about \(r_T \)?
 - lack of CK = anchored expectations = GE attenuation
 - attenuation increases with horizon (as if extra discounting)

- Results hold for a general class of dynamic beauty contests

\[
a_t = \theta_t + \left\{ \sum_{k=1}^{+\infty} \gamma^{k-1} E_t [\theta_{t+k}] \right\} + \alpha \left\{ \sum_{k=1}^{+\infty} \gamma^{k-1} E_t [a_{t+k}] \right\}
\]

- Inflation beauty contest: \(a_t = \pi_t \) and \(\theta_t = mc_t \)
- Asset pricing: \(a_t = p_t \) and \(\theta_t = \text{dividend} \)
The Role of HOB

Formally:
- hold r_t (& belief about it) constant for all $t \neq T$
- treat r_T as a random variable
- study how y_0 covaries with $\bar{E}_0[r_T]$ (ϕ_T)

By iterating, we can express y_0 as a linear function of
- 1st-order beliefs: $\bar{E}_0[r_T]$
- 2nd-order beliefs: $\bar{E}_0[\bar{E}_\tau[r_T]] \forall \tau: 0 < \tau < T$
- and so on, up to beliefs of order T

With CK, HOB collapse to FOB, and the "usual" predictions apply

Without CK, we need to understand
- how much HOB co-move with $\bar{E}_0[r_T]$
- how much HOB matter in y_0
Two Basic Insights

1. **HOB vary less than FOB**
 - “I am not 100% sure that you heard and paid attention to the news. As a result, I think your beliefs move less than mine”

2. **Longer horizons raise the relative importance of HOB**
 - the distant future enters through multiple rounds of GE effects:

 $$ r_T \rightarrow c_T \rightarrow c_{T-1} \rightarrow \ldots \rightarrow c_1 \rightarrow c_0 $$

 - This is akin to ascending the hierarchy of beliefs
 - Longer horizons therefore raise the load of HOB on outcomes
Results

1. **Attenuation at any horizon**
 - ϕ_T bounded between PE effect and CK counterpart:
 \[\beta^{T-1} < \phi_T < \phi^*_T \]
 - “CK maximizes GE effect”

2. **Attenuation effect increases with the horizon**
 - ϕ_T/ϕ^*_T decreases in T
 - the distant future enters through multiple rounds of GE effects:

3. **Attenuation effect grows without limit**
 - $\phi_T/\phi^*_T \to 0$ as $T \to \infty$ even if noise is tiny
Leading Example

- Info structure:
 - Gaussian **private signal** about r_T at 0: $x_i = r_T + \varepsilon_i$,
 - no other info $\tau < T$. r_T becomes known at T

- Implication: a simple exponential structure for HOB

\[\bar{E}_0^h[r_T] = \lambda^{h-1} \bar{E}_0[r_T] \]

where $\lambda \in (0, 1]$ is decreasing in the amount of noise

- Anchoring HOB as modeling device of limited depth of reasoning
Leading Example

- Back to our question: How does y_0 vary with $\tilde{E}_0[r_T]$?

- Answer: Same as in a representative-agent model with

$$y_t = -E_t[r_{t+1}] + \lambda'E_t[y_{t+1}]$$

 ➤ $\lambda' \in (0, 1)$
 ➤ as if myopia / extra discounting of future outcomes
 ➤ discounting comes from GE effect attenuation
Going Back to the Full NK model

Demand block (IS):
- attenuate GE feedback b/w \(c \) and \(y \) (Keynesian multiplier)
- anchor income expectations
- arrest response of \(c \) to news about future real rates
- as if extra discounting in the Euler condition

Supply block (NKPC):
- attenuate GE feedback from future to current \(\pi \)
- anchor inflation expectations
- arrest response of \(\pi \) to news about future marginal costs
- as if extra discounting in the NKPC

GE feedback b/w demand (IS) and supply (NKPC):
- joint endogeneity of real rates and real marginal cost
- attenuate GE feedback between two blocks
Outline

1. Introduction
2. Environment
3. GE Attenuation and Horizon Effects
4. Forward Guidance Puzzle
5. Conclusion
ZLB and Forward Guidance

- Let T index length of liquidity trap and horizon of FG
 - $t \leq T - 1$: ZLB binds and $R_t = 0$
 - $t \geq T + \Delta$: “natural level” and $y_t = \pi_t = 0$
 - let $\Delta = 1$ for simplicity

- Forward guidance: policy announcement at $t = 0$ of R_T
 - modeled as $z = R_T + \text{noise}$
 - noise captures central banks commitment issues and etc.

- We remove common knowledge of z
 - leading example: noisy private signals about z

- Remark
 - credibility has to do with how much $\bar{E}_0[R_T]$ varies with R_T
 - we focus on how y_0 varies with $\bar{E}_0[R_T]$
The Power of Forward Guidance

- Degree of CK indexed by $\lambda \in (0, 1]$

$$\bar{E}^h[R_T] = \lambda^{h-1} \bar{E}^1[R_T]$$

- consumers vs firms: λ_c vs λ_f
- CK benchmark nested with $\lambda_c = \lambda_f = 1$

Question: How does y_0 vary with $\bar{E}_0[R_T]$?

Answer: There exists a function ϕ such that

$$y_0 = -\phi(\lambda_c, \lambda_f; T, \kappa) \cdot \bar{E}_0[R_T]$$

- standard: ϕ^* increases with T and explodes as $T \to \infty$
- here: ϕ vs ϕ^*
Main Results

- **Attenuation for any horizon**: $\phi/\phi^* < 1$
 - three GE effects at work:
 1. inside IS: income-spending feedback
 2. inside NKPC: inflation-inflation feedback
 3. across two blocs: inflation-spending feedback
 - all three attenuated; but quantitative bite for (2) and (3)

- **Attenuation effect increases with horizon**
 - ϕ/ϕ^* decreases in T
 - $\phi/\phi^* \to 0$ as $T \to \infty$, even if $\lambda \approx 1$
 - for λ_c small enough, $\phi \to 0$ in absolute, not only relative to ϕ^*
A Numerical Illustration (based on Gali, 2008)

- Modest info friction: $\lambda_c = \lambda_f = 0.75$
 - 25% prob that others have failed to hear announcement
- On top of any mechanical effect that first order informational friction
Fiscal Stimuli

- Standard NK under ZLB prediction:
 - fiscal stimuli work because they trigger inflation
 - better to back-load so as to "pile up" inflation effects

- Our twist:
 - such piling up = iterating HOB
 - not as potent when CK assumption is dropped
 - rationale to front-load so as to minimize coordination friction
Outline

1. Introduction
2. Environment
3. GE Attenuation and Horizon Effects
4. Forward Guidance Puzzle
5. Conclusion
Companion Paper

- REE alone ⇒ restrict GE in an interval
 - Standard practice (REE+ CK) -> upper bound of the interval

- Lack of CK = GE dampened

- Non-REE variants often, but not always, attenuate GE
 - level-k, Tatonnement, Cobweb, Sparsity, ε-equilibrium
 - Lack of CK = a structured way to relax REE

- Connection to empirical work a la Mian-Sufi
 - reduce GE = reduce gap between micro and macro elasticities
Conclusion

- Forward-looking expectations crucial in modern macro

- By assuming CK with REE, hardwire a certain kind of perfection in
 - how economic agents to coordinate their expectations
 - maximize policy makers abilities to steer economy

- Remove CK helps accommodate a realistic friction
 - alleviate forward guidance puzzle

- Insights and the techniques may find additional applications
 - fiscal multipliers
 - demand driven business cycles